Eccentricity of a vertex

Материал из WikiGrapp
Перейти к:навигация, поиск

Eccentricity of a vertex --- эксцентриситет вершины.

Let d(x,y) be the distance in a graph G. Then the eccentricity e(v) of a vertex v is the maximum over d(v,x), \; x \in V(G). The minimum over the eccentricities of all vertices of G is the radius rad(G) of G, whereas the maximum is the diameter diam(G) of G. A pair x, y of vertices of G is called diametral iff d(x,y) = diam(G). A chain in G which length is equal to diam(G) is called a diametral chain.

See also

  • Quasi-diameter,
  • Quasi-radius.