Интервальная функция: различия между версиями

Перейти к навигации Перейти к поиску
нет описания правки
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
'''Интервальная функция''' (''[[Interval function]]'') - пусть <math>G = (V,E)</math> --- [[граф]] и пусть <math>{\mathcal P}(V)</math> --- множество всех подмножеств из <math>V</math>. Отображение <math>I_{G}: \; V \times V \leftarrow {\mathcal P}(V)</math>, определяемое как <math>I_{G}(u,v) = \{w \, | \, w \in V, \, w</math> лежит на [[кратчайший путь|кратчайшем пути]] <math> P(u,v)</math> в графе  <math>G\},</math> называется '''И.ф.''' графа <math>G</math>.
'''Интервальная функция''' (''[[Interval function]]'') пусть <math>\,G = (V,E)</math> [[граф]] и пусть <math>{\mathcal P}(V)</math> множество всех подмножеств из <math>\,V</math>. Отображение <math>I_{G}: \; V \times V \leftarrow {\mathcal P}(V)</math>, определяемое как <math>I_{G}(u,v) = \{w \, | \, w \in V, \, w</math> лежит на [[кратчайший путь|кратчайшем пути]] <math>\,P(u,v)</math> в графе  <math>\,G\},</math> называется '''интервальной функцией''' графа <math>\,G</math>.


Для [[дерево|дерева]] интервальная функция для любых двух его [[вершина|вершин]] <math>u</math> и <math>v</math> дает образ, состоящий из вершины единственного кратчайшего пути, соединяющего пару <math>u, v</math>.
Для [[дерево|дерева]] интервальная функция для любых двух его [[вершина|вершин]] <math>\,u</math> и <math>\,v</math> дает образ, состоящий из вершины единственного кратчайшего пути, соединяющего пару <math>\,u, v</math>.
==Литература==
==Литература==
[Mulder]
* Mulder H.M.  The  interval  function  of a graph,  Mathematical Centre Tracts 132. — Amsterdam, 1980.

Навигация