1303
правки
KVN (обсуждение | вклад) Нет описания правки |
KVN (обсуждение | вклад) Нет описания правки |
||
| Строка 8: | Строка 8: | ||
A node <math>p</math> of a fragment <math>A</math> is called '''initial''' (respectively, '''output''' or '''exit''') | A node <math>p</math> of a fragment <math>A</math> is called '''initial''' (respectively, '''output''' or '''exit''') | ||
if either <math>p</math> is the initial node of <math>G</math> (respectively, <math>p</math> is the terminal node of <math>G</math>) | if either <math>p</math> is the initial node of <math>G</math> (respectively, <math>p</math> is the terminal node of <math>G</math>) | ||
or an arc of <math>G</math> not belonging to <math>A</math> enters <math>p</math> ( respectively, leaves <math> | or an arc of <math>G</math> not belonging to <math>A</math> enters <math>p</math> ( respectively, leaves <math>p</math>). | ||
A node <math>p</math> of a fragment <math>A</math> is called its '''entry ''' if there is a part from the initial node of <math>G</math> to <math>p</math> | A node <math>p</math> of a fragment <math>A</math> is called its '''entry ''' if there is a part from the initial node of <math>G</math> to <math>p</math> | ||
| Строка 15: | Строка 15: | ||
A node <math>p</math> of a fragment <math>A</math> other than the initial and terminal nodes of <math>G</math> | A node <math>p</math> of a fragment <math>A</math> other than the initial and terminal nodes of <math>G</math> | ||
is called a boundary of <math>A</math> if <math>p</math> is the initial or output node of <math>A</math>. | is called a '''boundary''' of <math>A</math> if <math>p</math> is the initial or output node of <math>A</math>. | ||
Let <math>p</math> be a | Let <math>p</math> be a boundary node of a fragment <math>A</math>. It is called '''starting ''' | ||
of <math>A</math> if <math>A</math> contains no predecessors of <math>p</math> or all successors of <math>p</math>. It is called | of <math>A</math> if <math>A</math> contains no predecessors of <math>p</math> or all successors of <math>p</math>. It is called | ||
'''finishing'''of <math>A</math> if <math>A</math> contains all predecessors of <math>p</math> or no successors of <math>p</math>. | '''finishing''' of <math>A</math> if <math>A</math> contains all predecessors of <math>p</math> or no successors of <math>p</math>. | ||
[[Категория: Потоковый анализ программ]] | [[Категория: Потоковый анализ программ]] | ||