Fragment of flow graph: различия между версиями

Перейти к навигации Перейти к поиску
нет описания правки
Нет описания правки
Нет описания правки
Строка 8: Строка 8:
A node <math>p</math> of a fragment <math>A</math> is called '''initial''' (respectively, '''output''' or '''exit''')
A node <math>p</math> of a fragment <math>A</math> is called '''initial''' (respectively, '''output''' or '''exit''')
if either <math>p</math> is the initial node of <math>G</math> (respectively, <math>p</math> is the terminal node of <math>G</math>)
if either <math>p</math> is the initial node of <math>G</math> (respectively, <math>p</math> is the terminal node of <math>G</math>)
or an arc of <math>G</math> not belonging to <math>A</math> enters <math>p</math> ( respectively, leaves <math>P</math>).
or an arc of <math>G</math> not belonging to <math>A</math> enters <math>p</math> ( respectively, leaves <math>p</math>).


A node <math>p</math> of a fragment <math>A</math> is called its '''entry ''' if there is a part from the initial node of <math>G</math> to <math>p</math>
A node <math>p</math> of a fragment <math>A</math> is called its '''entry ''' if there is a part from the initial node of <math>G</math> to <math>p</math>
Строка 15: Строка 15:


A node <math>p</math> of a fragment <math>A</math> other than the initial and terminal nodes of <math>G</math>
A node <math>p</math> of a fragment <math>A</math> other than the initial and terminal nodes of <math>G</math>
is called a boundary of <math>A</math> if <math>p</math> is the initial or output node of <math>A</math>.
is called a '''boundary''' of <math>A</math> if <math>p</math> is the initial or output node of <math>A</math>.


Let <math>p</math> be a '''boundary''' node of a fragment <math>A</math>. It is called '''starting '''
Let <math>p</math> be a boundary node of a fragment <math>A</math>. It is called '''starting '''
of <math>A</math> if <math>A</math> contains no predecessors of <math>p</math>  or all successors of <math>p</math>. It is called
of <math>A</math> if <math>A</math> contains no predecessors of <math>p</math>  or all successors of <math>p</math>. It is called
'''finishing'''of <math>A</math> if <math>A</math> contains all predecessors of <math>p</math> or no successors of <math>p</math>.
'''finishing''' of <math>A</math> if <math>A</math> contains all predecessors of <math>p</math> or no successors of <math>p</math>.




[[Категория: Потоковый анализ программ]]
[[Категория: Потоковый анализ программ]]

Навигация