Иерархический граф: различия между версиями

Перейти к навигации Перейти к поиску
нет описания правки
Нет описания правки
Нет описания правки
Строка 16: Строка 16:


Пусть задана некоторая иерархия фрагментов <math>F</math> графа <math>G</math>.
Пусть задана некоторая иерархия фрагментов <math>F</math> графа <math>G</math>.
Для любых <math>C_1, C_2 \in F</math> фрагмент <math>C_1</math> --- [[Прямой подфрагмент|прямой
Для любых <math>C_1, C_2 \in F</math> фрагмент <math>C_1</math> --- [[прямой подфрагмент]] ([[immediate subfragment]]) <math>C_2</math> (или, что то же самое, фрагмент, [[непосредственно вложенный]] (immediately included) в <math>C_2</math>),если <math>C_1</math> --- подфрагмент <math>C_2</math> и не существует такого
подфрагмент]] ([[immediate subfragment]]) <math>C_2</math> (или, что то же самое, фрагмент, непосредственно вложенный в <math>C_2</math>),если <math>C_1</math> --- подфрагмент <math>C_2</math> и не существует такого
<math>C_3 \in F</math>, отличного от <math>C_1</math> и <math>C_2</math>,что
<math>C_3 \in F</math>, отличного от <math>C_1</math> и <math>C_2</math>,что
<math>C_1\subseteq C_3\subseteq C_2</math>.
<math>C_1\subseteq C_3\subseteq C_2</math>.


'''Иерархический граф''' (''[[hierarchical graph]]'') <math>H = (G,T)</math> состоит из графа <math>G</math> и
'''Иерархический граф''' (''[[hierarchical graph]]'') <math>H = (G,T)</math> состоит из графа <math>G</math> и
Строка 47: Строка 44:
образуют такие <math>H = (G,T)</math>,
образуют такие <math>H = (G,T)</math>,
что каждая вершина дерева вложенности <math>T</math> соответствует
что каждая вершина дерева вложенности <math>T</math> соответствует
некоторому порожденному подграфу (induced subgraph) основного графа <math>G</math>. Такие графы будем называть ''[[Простой иерархический граф|простыми]]'' (''[[Simple hierarchical graph|simple]]'') иерархическими графами. Поскольку  
некоторому порожденному подграфу (induced subgraph) основного графа <math>G</math>. Такие графы будем называть ''[[Простой иерархический граф|простыми]]'' (''[[Simple hierarchical graph|simple]]'') иерархическими графами. Поскольку подграфы однозначно определяются множествами своих вершин,
подграфы однозначно определяются множествами своих вершин,
есть возможность определять простой иерархический граф <math>H</math>
есть возможность определять простой иерархический граф <math>H</math>
как пару <math>(G,T)</math>, состоящую из основного графа <math>G</math> и  
как пару <math>(G,T)</math>, состоящую из основного графа <math>G</math> и  
Строка 59: Строка 55:
непосредственную вложенность соответствующих подмножеств.
непосредственную вложенность соответствующих подмножеств.
Такое представление иерархического графа будем называть  
Такое представление иерархического графа будем называть  
вершинным.  
''[[Вершинный иерархический граф|вершинным]]'' (''[[Apex hierarchical graph|apex]]'').  


''[[Кластерный граф]]'' (''[[clustered graph]]'') --- это простой вершинный иерархический граф с неориентированным основным графом.
''[[Кластерный граф]]'' (''[[clustered graph]]'') --- это простой вершинный иерархический граф с неориентированным основным графом.

Навигация