4635
правок
KEV (обсуждение | вклад) Нет описания правки  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 3: | Строка 3: | ||
The '''<math>\,k</math>-cyclic chromatic number''' <math>\,\chi_{k}(G)</math> of a [[plane graph]] is the smallest number of colours in a [[vertex]] [[Coloring, colouring|colouring]] of <math>\,G</math> such that no face of size at most <math>\,k</math> has two boundary vertices of the same colour. It is easy to see that the Four Colour Theorem may be stated in the form:  | The '''<math>\,k</math>-cyclic chromatic number''' <math>\,\chi_{k}(G)</math> of a [[plane graph]] is the smallest number of colours in a [[vertex]] [[Coloring, colouring|colouring]] of <math>\,G</math> such that no face of size at most <math>\,k</math> has two boundary vertices of the same colour. It is easy to see that the Four Colour Theorem may be stated in the form:  | ||
<math>\,\chi_{3}(G) \leq 4</math>  | |||
for every plane graph <math>\,G</math>.  | for every plane graph <math>\,G</math>.  | ||