4635
правок
Glk (обсуждение | вклад)  (Новая страница: «'''Connected to relation''' --- отношение связности ''к'', (достижимость) в гиперграфе.   The relation '''connected to''', …»)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Connected to relation'''   | '''Connected to relation''' — ''[[отношение связности ''к'']], [[(достижимость) в гиперграфе]].''   | ||
The relation '''connected to''', which is denoted by the symbol  | The relation '''connected to''', which is denoted by the symbol  | ||
<math>\succ</math>, is defined for a given subset <math>R</math> of nodes and a node <math>y</math>;  | <math>\succ</math>, is defined for a given subset <math>\,R</math> of nodes and a [[node]] <math>\,y</math>;  | ||
we say that <math>R</math> is '''connected to''' <math>y</math> and write <math>R \succ y</math> if and only if a ''directed hyperpath'' exsists in a hypergraph from <math>R</math>  | we say that <math>\,R</math> is '''connected to''' <math>\,y</math> and write <math>R \succ y</math> if and only if a ''[[directed hyperpath]]'' exsists in a [[hypergraph]] from <math>\,R</math>  | ||
to the node <math>y</math>.  | to the node <math>\,y</math>.  | ||
It is easy to check that the relation <math>\succ</math> satisfies the following set of  | It is easy to check that the relation <math>\succ</math> satisfies the following set of  | ||
| Строка 16: | Строка 16: | ||
(3) <math>R \succ y, \; \forall y \in Y,\mbox{ and }Y \succ z \Rightarrow  | (3) <math>R \succ y, \; \forall y \in Y,\mbox{ and }Y \succ z \Rightarrow  | ||
R \succ z</math> (transitivity).  | R \succ z</math> (transitivity).  | ||
==Литература==  | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.  | |||