1103
правки
KVN (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
Строка 20: | Строка 20: | ||
== Метрическая теория алгоритмов == | == Метрическая теория алгоритмов == | ||
Теорию алгоритмов разделяют на дескриптивную (качественную) и метрическую (количественную). Первая исследует алгоритмы с точки зрения устанавливаемого ими соответствия между исходными данными и результатами, к ней относятся, в частности, те алгоритмические проблемы, о которых говорилось в предыдущем разделе. Вторая исследует алгоритмы с точки зрения сложности как самих алгоритмов, так и задаваемых ими "вычислений", т. е. процессов последовательного преобразования конструктивных объектов. Важно подчеркнуть, что сложность алгоритмов и вычислений может определяться различными способами, причём может оказаться, что при одном способе А будет сложнее В, а при другом способе — наоборот. Чтобы говорить о сложности алгоритмов, надо сперва описать какой-либо точный язык для записи алгоритмов и затем под сложностью алгоритма понимать сложность его записи; сложность же записи можно определять различными способами (например, как число символов данного типа, участвующих в записи, или как набор таких чисел, вычисленных для разных типов символов). Чтобы говорить о сложности вычисления, надо уточнить, как именно вычисление представляется в виде цепочки сменяющих друг друга конструктивных объектов и что считается сложностью такой цепочки (только ли число членов в ней — "число шагов" вычисления или ещё учитывается "размер" этих членов и т. п.); в любом случае сложность вычисления зависит от исходного данного, с которого начинается вычисление, поэтому сложность вычисления есть функция, сопоставляющая с каждым объектом из области применимости алгоритма сложность соответствующей цепочки. Разработка методов оценки сложности алгоритмов и вычислений имеет важное теоретическое и практическое значение, однако в отличие от дескриптивной | Теорию алгоритмов разделяют на [[дескриптивная теория алгоритмов|дескриптивную (качественную)]] и [[метрическая теория алгоритмов|метрическую (количественную)]]. Первая исследует алгоритмы с точки зрения устанавливаемого ими соответствия между исходными данными и результатами, к ней относятся, в частности, те алгоритмические проблемы, о которых говорилось в предыдущем разделе. Вторая исследует алгоритмы с точки зрения сложности как самих алгоритмов, так и задаваемых ими "вычислений", т. е. процессов последовательного преобразования конструктивных объектов. Важно подчеркнуть, что сложность алгоритмов и вычислений может определяться различными способами, причём может оказаться, что при одном способе А будет сложнее В, а при другом способе — наоборот. Чтобы говорить о сложности алгоритмов, надо сперва описать какой-либо точный язык для записи алгоритмов и затем под сложностью алгоритма понимать сложность его записи; сложность же записи можно определять различными способами (например, как число символов данного типа, участвующих в записи, или как набор таких чисел, вычисленных для разных типов символов). Чтобы говорить о сложности вычисления, надо уточнить, как именно вычисление представляется в виде цепочки сменяющих друг друга конструктивных объектов и что считается сложностью такой цепочки (только ли число членов в ней — "число шагов" вычисления или ещё учитывается "размер" этих членов и т. п.); в любом случае сложность вычисления зависит от исходного данного, с которого начинается вычисление, поэтому сложность вычисления есть функция, сопоставляющая с каждым объектом из области применимости алгоритма сложность соответствующей цепочки. Разработка методов оценки сложности алгоритмов и вычислений имеет важное теоретическое и практическое значение, однако в отличие от дескриптивной теории алгоритмов, уже оформившейся в целостную математическую дисциплину, метрическая теория алгоритмов все еще активно развивается в рамках так называемой | ||
[[теория вычислений|теории вычислений]]. | |||
== Приложения теории алгоритмов == | == Приложения теории алгоритмов == |