Decomposition dimension

Материал из WikiGrapp
Перейти к:навигация, поиск

Decomposition dimension --- декомпозитная размерность.

A decomposition {\mathcal F} = \{F_{1}, \ldots, F_{r}\} of the edge set of a graph G is called a resolving r-decomposition, if for any pair of edes e_{1} and e_{2} there exists an index i such that d(e_{1},F_{i}) \neq d(e_{2},F_{i}), where d(e,F) denotes the distance from e to F. The decomposition dimension dec(G) of a graph G is the least integer r such that there exists a resolving r-decomposition.

See also

  • Metric dimension.