Complete rotation

Материал из WikiGrapp
Перейти к:навигация, поиск

Complete rotationполное вращение (орграфа).

Let \,G = Cay(\Gamma,S) be a Cayley digraph with \,|S| = d. (See also Associated Cayley digraph).

A complete rotation of \,G is a group automorphism \,\omega of \,\Gamma such that for some ordering \,s_{0}, s_{1}, \ldots, s_{d-1} of the elements of \,S, we have \,\omega(s_{i}) = s_{i+1} for every \,t\in Z.

Clearly, a rotation is a graph automorphism. A Cayley digraph with a complete rotation is called a rotational Cayley digraph.


  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.