Addressing scheme

Материал из WikiGrapp
Перейти к:навигация, поиск

Addressing schemeадресующая схема.

An addressing scheme for a transformation graph {\mathcal G} = (V_{{\mathcal
G}},\Lambda_{{\mathcal G}}) is a total function

\bar{a}: V_{{\mathcal G}} \rightarrow \bar{Mo}(\Lambda_{{\mathcal G}}),

such that the following two properties hold:

(1) for some origin vertex v_{0} \in V_{{\mathcal G}} v_{0}\bar{a} = \bar{Id}_{V_{{\mathcal G}}},

(2) for all transformations \lambda \in \Lambda_{{\mathcal G}} and all vertices v \in Domain(\lambda)

(\lambda)\bar{a} = (v\bar{a}) \cdot \lambda;

the lefthand side denotes functional application, and the righthand side denotes multiplication in \bar{Mo}(\Lambda_{{\mathcal G}}).

A transformation graph is addressable if it admits an addressing scheme.