Планирование с учетом наименьшего прошедшего времени обработки
Ключевые слова и синонимы
Продолжительность пребывания; время отклика; составление расписания с неизвестными размерами заданий; алгоритм MLF; очереди с обратной связью
Постановка задачи
Задача связана с планированием динамически поступающих заданий в сценарии, когда требования к обработке заданий неизвестны планировщику. Отсутствие знания о том, сколько времени займет выполнение задания, нередко встречается в реальных системах, где такую информацию может быть трудно или невозможно получить. Цель состоит в том, чтобы составить расписание заданий, обеспечивающего пользователям высокое качество обслуживания. В частности, целью является разработка алгоритмов, имеющих хорошую среднюю производительность и являющихся справедливыми в том смысле, что ни одно подмножество пользователей не получает существенно более низкой производительности по сравнению с другими.
Нотация
Обозначим за J = f1;2... ; ng множество заданий во входном экземпляре задачи. Каждое задание j характеризуется временем освобождения rj и требованием к обработке pj. В онлайновом режиме задание j сообщается планировщику только в момент времени rj. Еще одним ограничением является режим с отсутствием предвидения, в котором в момент rj раскрывается только существование задания j; в частности, pj планировщику неизвестно до тех пор, пока задание не выполнит свое требование к обработке и не покинет систему. Пусть имеется расписание, тогда время завершения cj задания – это самое раннее время, в которое задание j получает объем обслуживания pj. Продолжительность потока fj задания j определяется как cj – rj. Протяженность задания определяется как отношение времени потока к его объему. Протяженностью также называют нормализованную продолжительность потока или замедление, и она является естественной мерой справедливости, поскольку измеряет время ожидания задания на единицу полученного обслуживания. Расписание называется вытесняющим, если задание может быть прервано произвольно, и его выполнение может быть возобновлено позже с момента прерывания без каких-либо штрафов. Хорошо известно, что вытеснение необходимо для получения разумных гарантий времени потока даже в оффлайновом режиме [5].
Вспомним, что онлайновый алгоритм Shortest Remaining Processing Time (SRPT), который в любой момент времени работает над заданием с наименьшим оставшимся временем обработки, является оптимальным для минимизации средней продолжительности потока.
Однако алгоритм SRPT часто критикуют за то, что он может привести к «зависанию» заданий, в случае которого некоторые задания могут откладываться на неопределенное время. Например, рассмотрим последовательность, в которой задание размера 3 поступает в момент времени t = 0, а затем в течение длительного времени одно задание размера 1 поступает каждую единицу времени, начиная с t = 1. При использовании алгоритма SRPT задание размера 3 будет отложено до тех пор, пока не перестанут поступать задания размера 1. С другой стороны, если целью является минимизация максимальной продолжительности потока, то легко увидеть, что оптимальным алгоритмом является алгоритм First in First Out (FIFO). Однако FIFO может работать очень плохо с точки зрения средней продолжительности потока (например, множество маленьких заданий может застрять из-за очень большого задания, которое прибыло чуть раньше). Естественным способом сбалансировать среднюю и наихудшую производительность является рассмотрение lp-норм продолжительности потока и протяженности, где lp-норма последовательности x 1 ; xn ; xi )1/p. xi )1/p. определяется как
Shortest Elapsed Time First (SETF) – это алгоритм без предвидения, который в любой момент времени работает над заданием, получившим на текущий момент наименьший объем обслуживания. Это естественный способ отдать предпочтение коротким заданиям, учитывая отсутствие знания о размерах заданий. Фактически SETF представляет собой непрерывную версию алгоритма многоуровневой обратной связи (Multi-Level Feedback, MLF). К сожалению, SETF (или любой другой детерминированный алгоритм без предвидения) плохо работает в рамках конкурентного анализа, где алгоритм называется c-конкурентным, если для каждого входного экземпляра его производительность не более чем в c раз ниже, чем у оптимального автономного (обладающего предвидением) решения для этого экземпляра [7]. Однако конкурентный анализ может быть слишком пессимистичным в своих гарантиях. Способ обойти эту проблему был предложен Кальянасундарамом и Прусом [ ], которые позволили онлайн-планировщику использовать немного более быстрый процессор, чтобы компенсировать отсутствие знаний о будущих поступлениях и размерах заданий. Алгоритм Alg является s-скоростным, c-скоростным конкурентным, где c – отношение наихудшего случая для всех экземпляров I, Algs(I)/Opt1 (I), где Algs – значение решения, полученного Alg при использовании s-скоростного процессора, а Opt1 – оптимальное значение при использовании процессора с единичной скоростью. Как правило, наиболее интересные результаты получаются в случаях, когда c мало и s = (1 + e) для любого произвольного e > 0.
Основные результаты
В основополагающей работе [ ] Кальянасундарам и Прус доказали следующие положения.
Теорема 1 [6]. SETF является (1 + e)-скоростным, (1 + 1/e)-конкурентным алгоритмом без предвидения для минимизации средней продолжительности потока на одной машине с вытеснением.
Для минимизации средней протяженности Мутукришнан, Раджараман, Шахин и Герке [ ] рассмотрели формулировку задачи с предвидением и показали, что алгоритм SRPT является 2-конкурентным для одной машины и 14-конкурентным для нескольких машин. Формулировку без предвидения рассмотрели Бансал, Дхамдхере, Конеманн и Синха [ ]. Они получили следующий результат:
Теорема 2 [1]. SETF является (1 + e)-скоростным, O(log2P)-конкурентным алгоритмом для минимизации средней растяжимости, где P – отношение максимального размера задания к минимальному. С другой стороны, даже при скорости O(1) любой алгоритм без предвидения, по меньшей мере, Q (log P)-конкурентоспособен. Любопытно, что с точки зрения n любой алгоритм без предвидения должен быть Q(n)-конкурентным даже при ускорении O(1). Более того, SETF является O(n)-конкурентным (даже без дополнительного ускорения).
Для специального случая, когда все задания поступают в момент времени 0, алгоритм SETF является оптимальным вплоть до константных коэффициентов. Он O(logP)-конкурентен (без дополнительного ускорения). Более того, любой алгоритм без предвидения должен быть £?(logP)-конкурентным даже при ускорении порядка O(1).
Ключевой идеей вышеприведенного результата является связь между алгоритмами SETF и SRPT. Во-первых, за счет (1 + e)-ускорения можно показать, что SETF не хуже MLF в случае, когда пороги имеют степень (1 + e). Во-вторых, поведение MLF на экземпляре I может быть связано с поведением алгоритма Shortest Job First (SJF) на другом экземпляре I0, полученном из I путем разделения каждого задания на логарифмическое число заданий с геометрически возрастающими размерами. Наконец, производительность SJF связана с SRPT при помощи еще одного ускорения с коэффициентом (1 + e).
Бансал и Прус [ ] рассмотрели задачу минимизации lp-норм продолжительности потока и растяжимости на одной машине. Они получили следующий результат:
Теорема 3 [ ]. В постановке задачи с предвидением алгоритмы SRPT и SJF являются (1 + e)-скоростными, O(1 /e)-конкурентными для минимизации lp-норм времени потока и растяжимости. С другой стороны, для 1 < p < 1 ни один онлайновый алгоритм (возможно, с предвидением) не может быть O(1)-конкурентным для минимизации lp норм растяжимости или продолжительности потока без ускорения. В частности, любой рандомизированный онлайн-алгоритм является по меньшей мере Q{n^ ^13р )-конкурентным для lp-норм растяжимости и по меньшей мере Q(n{P~l)lP{iP~l))-конкурентным для lp-норм продолжительности потока.
Вышеприведенные нижние границы несколько удивительны, поскольку SRPT и FIFO оптимальны для случая p = 1 и p = 1 для времени потока.
Бансал и Прус [ ] также рассматривают вариант задачи без предвидения.
Теорема 4 [ ]. В постановке задачи без предвидения алгоритм SETF является (1 + e)-скоростными, 0(l/€2+2lt>)-конкурентным для минимизации lp-норм продолжительности потока. Для минимизации lp-нормы растяжимости SETF является (1 + e)-скоростным, O(l/e3+1/? - log1+1/p P)-конкурентным.
Наконец, Bansal и Pruhs также рассматривают алгоритм Round Robin (RR) или Processor Sharing, который в любой момент времени делит процессор поровну между незавершенными заданиями. Считается, что RR является идеальной справедливой стратегией, поскольку одинаково относится ко всем незавершенным заданиям. Тем не менее, они показали следующий результат:
Теорема 5. Для любого p > 1 существует e > 0, такое, что даже при наличии в (1 + e) раз более быстрого процессора алгоритм RR не является оптимальным для минимизации lp-норм продолжительности потока. В частности, для e < 1/2p алгоритм RR является (1 + e)-скоростным, ^(п^-^РЩ-конкурентным. Для lp-норм растяжимости RR является Q(n)-конкурентным, как и фактически любой рандомизированный алгоритм без предвидения.
Приведенные выше результаты были расширены по нескольким направлениям. Бансал и Прус [ ] распространили эти результаты на взвешенные lp-нормы продолжительности потока и растяжимости. Чекури, Ханна, Кумар и Гель [4] распространили их результаты на случай нескольких машин. Их алгоритмы особенно элегантны: каждое задание назначается некоторой машине случайным образом, и все задания на определенной машине обрабатываются с помощью алгоритма SRPT или SETF (в зависимости от применимости).
Применение
Алгоритм SETF и его варианты, такие как MLF, широко используются в операционных системах [9, 10]. Отметим, что SETF не совсем практичен, поскольку каждое задание может вытесняться бесконечное число раз. Однако варианты SETF с меньшим числом вытеснений довольно популярны.
Открытые вопросы
Было бы любопытно исследовать другие понятия справедливости в контексте динамического планирования. В частности, хотелось бы рассмотреть алгоритмы, одновременно являющиеся справедливыми и имеющие хорошую среднюю производительность.
Наиболее первоочередная задача заключается в том, можно ли сократить разрыв между O(log P) и J2(log P) для минимизации средней растяжимости в формулировке без предвидения.
См. также
Литература
1. Bansal, N., Dhamdhere, K., Konemann, J., Sinha, A.: Non-Clairvoyant Scheduling for Minimizing Mean Slowdown. Algorithmica 40(4), 305-318 (2004)
2. Bansal, N., Pruhs, K.: Server scheduling in the Lp norm: a rising tide lifts all boat. In: Symposium on Theory of Computing, STOC, pp. 242-250 (2003)
3. Bansal, N., Pruhs, K.: Server scheduling in the weighted Lp norm. In: LATIN, pp.434-443 (2004)
4. Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to minimize flow time with epsilon resource augmentation. In: Symposium on Theory of Computing, STOC, pp. 363-372 (2004)
5. Kellerer, H., Tautenhahn, T., Woeginger, G.J.: Approximability and Nonapproximability Results for Minimizing Total Flow Time on a Single Machine. SIAM J. Comput. 28(4), 1155-1166 (1999)
6. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617-643 (2000)
7. Motwani, R., Phillips, S., Torng, E.: Non-Clairvoyant Scheduling. Theor. Comput. Sci. 130(1), 17-47 (1994)
8. Muthukrishnan, S., Rajaraman, R., Shaheen, A., Gehrke, J.: Online Scheduling to Minimize Average Stretch. SIAM J. Comput. 34(2),433-452(2004)
9. Nutt, G.: Operating System Projects Using Windows NT. Addison Wesley, Reading (1999)
10. Tanenbaum, A.S.: Modern Operating Systems. Prentice-Hall Inc., Englewood Cliffs (1992)