Associated Cayley digraph

Материал из WEGA
Версия от 13:22, 17 февраля 2011; Glk (обсуждение | вклад) (Новая страница: «'''Associated Cayley digraph''' --- соотнесённый орграф Кэли. Let <math>\Gamma</math> be a group and <math>S</math> be a generating set of …»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Associated Cayley digraph --- соотнесённый орграф Кэли.

Let [math]\displaystyle{ \Gamma }[/math] be a group and [math]\displaystyle{ S }[/math] be a generating set of [math]\displaystyle{ \Gamma }[/math] such that

(1) [math]\displaystyle{ e \not \in S }[/math], [math]\displaystyle{ e }[/math] is the identity in [math]\displaystyle{ \Gamma }[/math],

(2) [math]\displaystyle{ s \in S \Leftrightarrow s^{-1} \in S }[/math].


The associated Cayley digraph [math]\displaystyle{ Cay(\Gamma,S) }[/math] is a digraph whose vertices are the elements of [math]\displaystyle{ \Gamma }[/math] and arcs are the couples [math]\displaystyle{ (x,sx) }[/math] for [math]\displaystyle{ x \in \Gamma }[/math] and [math]\displaystyle{ s \in S }[/math].

With this definition, [math]\displaystyle{ Cay(\Gamma,S) }[/math] is a connected symmetric digraph (in fact, a strongly connected digraph).