Cocomparability ordering

Материал из WEGA
Версия от 10:47, 24 октября 2018; KVN (обсуждение | вклад)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Cocomparability orderingкосравнимое упорядочение.

A graph [math]\displaystyle{ \,G }[/math] has a cocomparability ordering if there exists a linear order [math]\displaystyle{ \,\lt }[/math] on the set of its vertices such that for every choice of vertices [math]\displaystyle{ \,u, v, w }[/math] the following property holds

[math]\displaystyle{ u \lt v \lt w \wedge (u,w) \in E \Rightarrow (u,v) \in E \vee (v,w) \in E. }[/math]

A graph is a cocomparability graph if it admits a cocomparability ordering.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.