Clique cover: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Новая страница: «'''Clique cover''' --- кликовое покрытие. Let <math>F</math> be a family of cliques. By a '''clique cover''' we mean a spanning subgraph of <math>G…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Clique cover''' --- кликовое покрытие.  
'''Clique cover''' — ''[[кликовое покрытие]].''


Let <math>F</math> be a family of cliques. By a '''clique cover''' we mean a spanning
Let <math>\,F</math> be a family of cliques. By a '''clique cover''' we mean a [[spanning subgraph]] of <math>\,G</math>, each component of which is a member of <math>\,F</math>. With each
subgraph of <math>G</math>, each component of which is a member of <math>F</math>. With each
element <math>\,\alpha</math> of <math>\,F</math> we associate an indeterminate (or [[weight (of a vertex)|weight]]) <math>\,w_{\alpha}</math>, and with each cover <math>\,C</math> of <math>\,G</math> we assosiate the weight <math>w(C) = \prod_{\alpha \in C}w_{\alpha}</math>.
element <math>\alpha</math> of <math>F</math> we associate an indeterminate (or weight)
 
<math>w_{\alpha}</math>, and with each cover <math>C</math> of <math>G</math> we assosiate the weight
==Литература==
<math>w(C) = \prod_{\alpha \in C}w_{\alpha}</math>.
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 10:47, 24 октября 2018

Clique coverкликовое покрытие.

Let [math]\displaystyle{ \,F }[/math] be a family of cliques. By a clique cover we mean a spanning subgraph of [math]\displaystyle{ \,G }[/math], each component of which is a member of [math]\displaystyle{ \,F }[/math]. With each element [math]\displaystyle{ \,\alpha }[/math] of [math]\displaystyle{ \,F }[/math] we associate an indeterminate (or weight) [math]\displaystyle{ \,w_{\alpha} }[/math], and with each cover [math]\displaystyle{ \,C }[/math] of [math]\displaystyle{ \,G }[/math] we assosiate the weight [math]\displaystyle{ w(C) = \prod_{\alpha \in C}w_{\alpha} }[/math].

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.