Balanced digraph: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Новая страница: «'''Balanced digraph''' --- сбалансированный орграф. '''1.''' A digraph is '''balanced''', if for every vertex <math>v</math>, <math>deg^{+}(v…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Balanced digraph''' --- сбалансированный орграф.  
'''Balanced digraph''' — ''[[сбалансированный орграф]].''


'''1.''' A digraph is '''balanced''', if for every vertex <math>v</math>, <math>deg^{+}(v) =
'''1.''' A [[digraph]] is '''balanced''', if for every [[vertex]] <math>v</math>, <math>deg^{+}(v) =
deg^{-}(v)</math>.
deg^{-}(v)</math>.


'''2.''' A directed graph is called '''balanced''' if each of its cycles
'''2.''' A [[directed graph]] is called '''balanced''' if each of its [[cycle|cycles]]
contains equal numbers of forward and backward arcs.
contains equal numbers of [[forward arc|forward]] and [[backward arc|backward arcs]].


'''3.''' A directed graph <math>G</math> is '''balanced''' if there exists a ''homomorphism'' of <math>G</math> to a monotone path.
'''3.''' A directed graph <math>G</math> is '''balanced''' if there exists a ''[[homomorphism of a graph|homomorphism]]'' of <math>G</math> to a monotone [[path]].

Текущая версия от 16:31, 23 октября 2018

Balanced digraphсбалансированный орграф.

1. A digraph is balanced, if for every vertex [math]\displaystyle{ v }[/math], [math]\displaystyle{ deg^{+}(v) = deg^{-}(v) }[/math].

2. A directed graph is called balanced if each of its cycles contains equal numbers of forward and backward arcs.

3. A directed graph [math]\displaystyle{ G }[/math] is balanced if there exists a homomorphism of [math]\displaystyle{ G }[/math] to a monotone path.