Balanced digraph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Balanced digraph''' --- сбалансированный орграф. '''1.''' A digraph is '''balanced''', if for every vertex <math>v</math>, <math>deg^{+}(v…») |
KVN (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Balanced digraph''' | '''Balanced digraph''' — ''[[сбалансированный орграф]].'' | ||
'''1.''' A digraph is '''balanced''', if for every vertex <math>v</math>, <math>deg^{+}(v) = | '''1.''' A [[digraph]] is '''balanced''', if for every [[vertex]] <math>v</math>, <math>deg^{+}(v) = | ||
deg^{-}(v)</math>. | deg^{-}(v)</math>. | ||
'''2.''' A directed graph is called '''balanced''' if each of its cycles | '''2.''' A [[directed graph]] is called '''balanced''' if each of its [[cycle|cycles]] | ||
contains equal numbers of forward and backward arcs. | contains equal numbers of [[forward arc|forward]] and [[backward arc|backward arcs]]. | ||
'''3.''' A directed graph <math>G</math> is '''balanced''' if there exists a ''homomorphism'' of <math>G</math> to a monotone path. | '''3.''' A directed graph <math>G</math> is '''balanced''' if there exists a ''[[homomorphism of a graph|homomorphism]]'' of <math>G</math> to a monotone [[path]]. |
Текущая версия от 16:31, 23 октября 2018
Balanced digraph — сбалансированный орграф.
1. A digraph is balanced, if for every vertex [math]\displaystyle{ v }[/math], [math]\displaystyle{ deg^{+}(v) = deg^{-}(v) }[/math].
2. A directed graph is called balanced if each of its cycles contains equal numbers of forward and backward arcs.
3. A directed graph [math]\displaystyle{ G }[/math] is balanced if there exists a homomorphism of [math]\displaystyle{ G }[/math] to a monotone path.