Articulation point: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Новая страница: «'''Articulation point''' --- точка сочленения графа, разделяющая вершина, шарнир. A vertex <math>v \in V</math> is an…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Articulation point''' --- точка сочленения графа, разделяющая вершина,
'''Articulation point''' — [[точка сочленения графа]], [[разделяющая вершина]],
шарнир.   
[[шарнир]].   


A vertex <math>v \in V</math> is an '''articulation point''' of a graph <math>G =
A [[vertex]] <math>v \in V</math> is an '''articulation point''' of a [[graph, undirected graph, nonoriented graph|graph]] <math>\,G = (V,E)</math> if <math>G(V \setminus \{v\})</math> is disconnected.  A graph <math>\,G</math> is '''2-connected'''  if <math>\,G</math> has no '''articulation points'''.  The maximal 2-connected [[subgraph|subgraphs]] of <math>\,G</math> are the '''blocks''' of <math>\,G</math>.
(V,E)</math> if <math>G(V \setminus \{v\})</math> is disconnected.  A graph <math>G</math> is '''2-connected'''  if <math>G</math> has no '''articulation points'''.  The maximal 2-connected subgraphs
of <math>G</math> are the '''blocks''' of <math>G</math>.


Other names are '''Cutpoint, Cutting vertex, Cutvertex'''.
Other names are '''[[Cutpoint]], [[Cutting vertex]], [[Cutvertex]]'''.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 16:30, 23 октября 2018

Articulation pointточка сочленения графа, разделяющая вершина, шарнир.

A vertex [math]\displaystyle{ v \in V }[/math] is an articulation point of a graph [math]\displaystyle{ \,G = (V,E) }[/math] if [math]\displaystyle{ G(V \setminus \{v\}) }[/math] is disconnected. A graph [math]\displaystyle{ \,G }[/math] is 2-connected if [math]\displaystyle{ \,G }[/math] has no articulation points. The maximal 2-connected subgraphs of [math]\displaystyle{ \,G }[/math] are the blocks of [math]\displaystyle{ \,G }[/math].

Other names are Cutpoint, Cutting vertex, Cutvertex.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.