Аноним

Минимальные k-связные геометрические сети: различия между версиями

Материал из WEGA
м
мНет описания правки
Строка 27: Строка 27:
'''(Евклидова) задача нахождения k-реберно-связной остовной мультисети минимальной стоимости'''
'''(Евклидова) задача нахождения k-реберно-связной остовной мультисети минимальной стоимости'''


Для заданного множества S из n точек в евклидовом пространстве <math>\mathbb{R}^d \;</math> найти k-реберно-связную евклидову мультисеть минимальной стоимости, охватывающую точки S (под мультисетью понимается сеть, допускающая наличие параллельных ребер.
Для заданного множества S из n точек в евклидовом пространстве <math>\mathbb{R}^d \;</math> найти k-реберно-связную евклидову мультисеть минимальной стоимости, охватывающую точки S (под мультисетью понимается сеть, допускающая наличие ''параллельных'' ребер.




Понятие k-связности с минимальной стоимостью естественным образом расширяется на k-связность евклидовой сети Штейнера, если разрешить использование дополнительных вершин, называемых точками Штейнера. Для заданного набора точек S в пространстве <math>\mathbb{R}^d \;</math> геометрическая сеть G представляет собой k-вершинно-связную (или k-реберно-связную) сеть Штейнера для S, если множество вершин G является надмножеством S и для каждой пары точек из S существует k внутренне вершинно-непересекающихся (реберно-непересекащихся, соответственно) путей, соединяющих их в G.
Понятие k-связности с минимальной стоимостью естественным образом расширяется на k-связность евклидовой сети Штейнера, если разрешить использование дополнительных вершин, называемых [[точки Штейнера|точками Штейнера]]. Для заданного набора точек S в пространстве <math>\mathbb{R}^d \;</math> геометрическая сеть G представляет собой k-вершинно-связную (или k-реберно-связную) сеть Штейнера для S, если множество вершин G является надмножеством S и для каждой пары точек из S существует k внутренне вершинно-непересекающихся (реберно-непересекащихся, соответственно) путей, соединяющих их в G.




Строка 46: Строка 46:
'''Задача построения сети с повышенной живучестью'''
'''Задача построения сети с повышенной живучестью'''


Для заданного набора S точек в R и функции требования связности r:SxS^-N найти геометрическую сеть минимальной стоимости, охватывающую точки из S, такую, что для любой пары вершин p, q 2 S подсеть имеет грл внутренне вершинно-непересекающихся (или реберно-непересекащихся, соответственно) путей между p и q.
Для заданного набора S точек в <math>\mathbb{R}^d \;</math> и функции требования связности <math>r: S \times S \to \mathbb{N} \;</math> найти геометрическую сеть минимальной стоимости, охватывающую точки из S, такую, что для любой пары вершин <math>p, q \in S \;</math> подсеть имеет грл внутренне вершинно-непересекающихся (или реберно-непересекащихся, соответственно) путей между p и q.




4551

правка