4551
правка
Irina (обсуждение | вклад) Нет описания правки |
Irina (обсуждение | вклад) Нет описания правки |
||
Строка 30: | Строка 30: | ||
В ситуации, описываемой леммой, можно сказать, что мы можем кернелизовать исходные экземпляры до экземпляров размером не более g(k). Два этих класса задач тесно связаны, однако результаты их выполнения различаются. Наилучший известный FPT-алгоритм задачи построения максимального листового остовного дерева с временем выполнения O*(8.12) предложил Бонсма [ ] на основе подхода на базе экстремальных структур, который разработали Эстивилл-Кастро, Феллоуз, Лэнгстон и Розамонд [8]. Этот алгоритм определяет, имеет ли граф G с n вершинами остовное дерево не менее чем с k листьями. В то же время авторы работы [8] представили FPT-алгоритм с наименьшим размером ядра. | В ситуации, описываемой леммой, можно сказать, что мы можем кернелизовать исходные экземпляры до экземпляров размером не более g(k). Два этих класса задач тесно связаны, однако результаты их выполнения различаются. Наилучший известный FPT-алгоритм задачи построения максимального листового остовного дерева с временем выполнения O*(8.12) предложил Бонсма [ ] на основе подхода на базе экстремальных структур, который разработали Эстивилл-Кастро, Феллоуз, Лэнгстон и Розамонд [8]. Этот алгоритм определяет, имеет ли граф G с n вершинами остовное дерево не менее чем с k листьями. В то же время авторы работы [8] представили FPT-алгоритм с наименьшим размером ядра. | ||
Можно выделить пять независимых объектов, связанных с теорией экстремальных структур и иллюстрирующих все цели алгоритма построения максимального листового остовного дерева. Перечислим эти пять целей: | |||
(а) Более эффективные FPT-алгоритмы, полученные в результате применения теории для более глубокой структуры, более мощных правил редукции, связанных с этой теорией, и более сильных доказательств по индукции для улучшенных границ кернелизации. | |||
(б) Правила мощной предварительной обработки (редукции данных / кернелизации) и комбинации правил, которые могут использоваться независимо от того, насколько мал параметр, и могут комбинироваться с другими подходами – например, аппроксимацией и эвристиками. Обычно они несложны для программирования. | |||
(в) Градиенты и правила преобразования для эвристик локального поиска. | |||
(г) Алгоритмы аппроксимации с полиномиальным временем исполнения и границы эффективности, доказанные систематическим образом. | |||
(д) Структура, используемая для решения других задач. | |||
== Основные результаты == |
правка