Central fringe: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Central fringe''' --- центральная область. Some central vertices of <math>G</math> are barely in <math>C(G)</math>, in the sense that they a…») |
KVN (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Central fringe''' | '''Central fringe''' — [[центральная область]]. | ||
Some central vertices of <math>G</math> are barely in <math>C(G)</math>, in the sense that | Some [[central vertex|central vertices]] of <math>G</math> are barely in <math>C(G)</math>, in the sense that | ||
they are adjacent to the vertices that are not central. The | they are adjacent to the [[vertex|vertices]] that are not central. The | ||
subgraph of <math>C(G)</math> induced by those vertices with ''central distance'' <math>0</math> is called the '''central fringe''' of <math>G</math> and is denoted | [[subgraph]] of <math>C(G)</math> induced by those vertices with ''[[central distance]]'' <math>0</math> is called the '''central fringe''' of <math>G</math> and is denoted | ||
by <math>CF(G)</math>. | by <math>CF(G)</math>. | ||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 10:44, 24 октября 2018
Central fringe — центральная область.
Some central vertices of [math]\displaystyle{ G }[/math] are barely in [math]\displaystyle{ C(G) }[/math], in the sense that they are adjacent to the vertices that are not central. The subgraph of [math]\displaystyle{ C(G) }[/math] induced by those vertices with central distance [math]\displaystyle{ 0 }[/math] is called the central fringe of [math]\displaystyle{ G }[/math] and is denoted by [math]\displaystyle{ CF(G) }[/math].
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.