4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 44: | Строка 44: | ||
'''Теорема 1. Для любого множества точек S из n точек на плоскости и любого <math>c \ge 1 \;</math> существует | '''Теорема 1. Для любого множества точек S из n точек на плоскости и любого <math>c \ge 1 \;</math> существует c-WSPD-декомпозиция <math>\mathcal{P}</math> множества S под метрикой на графе единичных дисков, которая содержит <math>O(c^4 \; n \; log \; n)</math> пар и может быть вычислена за время <math>O(c^4 \; n \; log \; n)</math>.''' | ||
'''Теорема 2. Для любого множества точек S из n точек | '''Теорема 2. Для любого множества точек S из n точек в пространстве <math>\mathbb{R}^k</math> для <math>k \ge 3 \;</math> и любой константы <math>c \ge 1 \;</math> существует c-WSPD-декомпозиция <math>\mathcal{P}</math> множества S под метрикой на графе единичных шаров, которая содержит <math>O(n^{2 - 2/k}) \;</math> пар и может быть вычислена за время <math>O(n^{4/3} \; polylog \; n)</math> для k = 3 и за время <math>O(n^{2 - 2/k}) \;</math> для <math>k \ge 4 \;</math>.''' | ||
Строка 53: | Строка 53: | ||
Для множества точек с неограниченной плотностью применяется техника кластеризации, сходная с техникой из [6], | Для множества точек с неограниченной плотностью применяется техника кластеризации, сходная с техникой из [6], результатом применения которой оказывается множество «центральных узлов» с ограниченной плотностью. После этого к множеству центральных узлов применяется алгоритм для множеств ограниченной плотности. Наконец, для получения декомпозиции на значительно удаленные пары выполняется комбинация алгоритмов декомпозиции для множеств точек с ограниченной плотностью и для евклидовой метрики. Количество пар финальной декомпозиции определяется количеством пар, построенных для множества константной плотности, которое, в свою очередь, определяется границей, полученной при помощи соображения об упаковке. Было показано, что граница количества пар является строгой для <math>k \ge 3 \;</math>. | ||
== Применение == | == Применение == |
правка