Планарные геометрические остовы: различия между версиями
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
== Постановка задачи == | == Постановка задачи == | ||
Пусть S – множество точек на плоскости, а G – неориентированный граф с множеством вершин S, каждое ребро (u, v) которого имеет вес, равный евклидовому расстоянию |uv| между точками u и v. Для любых двух точек p и q в S обозначим кратчайший путь между ними в графе G за <math>\delta_G (p, q) \;</math>. Если <math>t \ge 1 \;</math> – вещественное число, то граф G является ''t-остовом'' S в случае, если <math>\delta_G(p, q) \le t |pq| \;</math> для любых двух точек p и q в S. Таким образом, если значение t близко к 1, то граф G содержит достаточно хорошие приближения <math>\tbinom{n}{2}</math> евклидовых расстояний, определяемых парами точек в S. Если к тому же G | Пусть S – множество точек на плоскости, а G – неориентированный граф с множеством вершин S, каждое ребро (u, v) которого имеет вес, равный евклидовому расстоянию |uv| между точками u и v. Для любых двух точек p и q в S обозначим кратчайший путь между ними в графе G за <math>\delta_G (p, q) \;</math>. Если <math>t \ge 1 \;</math> – вещественное число, то граф G является ''t-остовом'' S в случае, если <math>\delta_G(p, q) \le t |pq| \;</math> для любых двух точек p и q в S. Таким образом, если значение t близко к 1, то граф G содержит достаточно хорошие приближения <math>\tbinom{n}{2}</math> евклидовых расстояний, определяемых парами точек в S. Если к тому же G содержит O(n) ребер, то этот граф можно считать разреженным приближением полного графа на S. Наименьшее значение f, при котором G будет являться t-остовом, называется ''коэффициентом растяжения'' (или ''протяженностью'') G. Исчерпывающий обзор геометрических остовов можно найти в работе Нарасимхана и Смида [16]. | ||
Версия от 15:50, 30 января 2018
Ключевые слова и синонимы
Геометрическая сеть; протяженность; обход
Постановка задачи
Пусть S – множество точек на плоскости, а G – неориентированный граф с множеством вершин S, каждое ребро (u, v) которого имеет вес, равный евклидовому расстоянию |uv| между точками u и v. Для любых двух точек p и q в S обозначим кратчайший путь между ними в графе G за
Предположим, что каждое ребро (u, v) графа G реализовано в видео отрезка прямой, соединяющей точки u и v. Граф G называется планарным, если его ребра пересекаются только в точках их общих вершин.
Далее будут рассмотрены две задачи:
Задача 1. Определить наименьшее вещественное число t > 1, для которого выполняется следующее утверждение: Для каждого множества S из n точек на плоскости существует плоский граф с множеством вершин S, являющийся t-остовом для S. Разработать эффективный алгоритм построения такого плоского t-остова.
Задача 2. Определить наименьшее целое положительное число D, для которого выполняется следующее утверждение: Существует константное значение t, такое, что для каждого множества S из n точек на плоскости существует плоский граф с множеством вершин S и максимальной степенью, не превышающей D, который является t-остовом для S. Разработать эффективный алгоритм построения такого плоского t-остова.
Основные результаты
Пусть S – конечном множество точек на плоскости, имеющих общее положение; т.е. никакие три точки из S не лежат на одной прямой и никакие четыре – на одной окружности. Триангуляцией Делоне для множества S является плоский граф с множеством вершин S, в котором (u, v) является ребром в том и только том случае, если существует окружность, проходящая через u и v, внутри которой не содержится ни одной точки S. (Поскольку точки S находятся в общем положении, этот гарф представляет собой триангуляцию). Триангуляция Делоне на множестве из n точек на плоскости может быть построена за время O(n log n). Добкин, Фридман и Суповит [10] первыми показали, что коэффициент растяжения триангуляции Делоне ограничен константой. Они доказали, что триангуляция Делоне является t-остовом для
Теорема 1. Пусть S – конечное множество точек на плоскости. Триангуляция Делоне для множества S является t-остовом S при
Несколько более строгий результат был доказан Бозе и др. [3]. Они доказали, что для любых двух точек p и q из S триангуляция Делоне содержит путь между p и q, длина которого не превышает
Левкопулос и Лингас [14] обобщили результат теоремы 1: Предположим, что дана триангуляция Делоне для множества S. Тогда для любого вещественного числа r > 0 за время O(n) можно построить плоский граф G с множеством вершин S, являющийся t-остовом для S, где
Триангуляцию Делоне можно иначе определить как двойственную конструкцию по отношению к диаграмме Вороного на множестве S. Рассматривая диаграмму Вороного для метрики, отличной от евклидовой, получаем соответствующую триангуляцию Делоне. Чу [7] показал, что триангуляция Делоне на основе манхэттенского расстояния представляет собой
Теорема 2. Пусть S – конечное множество точек на плоскости. Рассмотрим триангуляцию Делоне для S, основанную на выпуклой функции расстояния, определяемой при помощи равностороннего треугольника. Этот плоский граф является 2-остовом для S (в котором длины путей измеряются при помощи евклидовой метрики).
Дас и Джозеф [9] следующим образом обобщили утверждение теоремы 1 (см. рисунок). Пусть G – плоский граф с множеством вершин S, а
С левой стороны изображено свойство
Теорема 3. Пусть
В качестве примера нетрудно показать, что триангуляция Делоне удовлетворяет свойству
Теперь рассмотрим задачу 2, касающуюся построения плоских остовов с невысокой максимальной степенью. Первый результат для этой задачи был получен Бозе и др. [2]. Они доказали, что триангуляция Делоне любого конечного множества точек содержит подграф с максимальной степенью не выше 27, являющийся t-остовом (для некоторого константного t). Ли и Ван [15] улучшили этот результат, показав, что триангуляция Делоне содержит t-остов со степенями не более 23. Если имеется триангуляция Делоне, подграфы в [2, 15] можно построить за время O(n). Лучший известный на сегодня результат для задачи 2 дали Бозе и др. [6]:
Теорема 4. Пусть S – множество n точек на плоскости. Триангуляция Делоне для множества S содержит подграф с максимальной степенью не выше 17, являющийся t-остовом S для некоторого константного t. Если имеется триангуляция Делоне, этот подграф можно построить за время O(n).
На самом деле результат оказался даже более общим:
Теорема 5. Пусть S – множество из n точек на плоскости,
Применение
Плоские остовы применяются при решении задач поиска путей и маршрутизации в режиме онлайн, которые возникают, например, в географических информационных системах и сетях коммуникаций. В этих областях применения, как правило, среда в целом неизвестна, и маршрутизацию приходится осуществлять, зная только местонахождение источника, точку назначения и ближайших соседей текущей позиции. Бозе и Морин [4, 5] показали, что в рамках этой модели имеются эффективные стратегии маршрутизации для планарных графов, такие как триангуляция Делоне и графы, одновременно удовлетворяющие свойствам
Открытые вопросы
Ни одно из решений задач 1 и 2, приведенных в разделе «Основные результаты», не является оптимальным. Следующие задачи остаются открытыми:
1. Определить наименьшее вещественное число t, при котором триангуляция Делоне любого конечного множества точек на плоскости является t-остовом. Распространено мнение, что
2. Определить наименьшее вещественное число t, при котором для любого конечного множества точек на плоскости существует плоский t-остов. Согласно теореме 2,
3. Определить наименьшее целое число D, при котором триангуляция Делоне любого конечного множества точек на плоскости содержит t-остов (для некоторого константного значения t), максимальная степень которого не превышает D. Согласно теореме 4,
4. Определить наименьшее вещественное число D, при котором для любого конечного множества точек на плоскости существует плоский t-остов (для некоторого константного значения t), максимальная степень которого не превышает D. Согласно теореме 4 и результатам из работы [1],
См. также
- Применение геометрических остовных сетей
- Протяженность геометрических сетей
- Геометрические остовы
- Разреженные остовы графов
Литература
1. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Vigneron, A.: Sparse geometric graphs with small dilation. In: Proceedings of the 16th International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, vol. 3827, pp. 50-59. Springer, Berlin (2005)
2. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42, 249-264 (2005)
3. Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., Zeh, N.: Approximating geometric bottleneck shortest paths. Comput. Geom.: Theory Appl. 29, 233-249 (2004)
4. Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Comput. Sci. 324,273-288 (2004)
5. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33,937-951 (2004)
6. Bose, P., Smid, M., Xu, D.: Diamond triangulations contain spanners of bounded degree. In: Proceedings of the 17th International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, vol. 4288, pp. 173-182. Springer, Berlin (2006)
7. Chew, L.P.: There is a planar graph almost as good as the complete graph. In: Proceedings of the 2nd ACM Symposium on Computational Geometry, pp. 169-177 (1986)
8. Chew, L.P.: There are planar graphs almost as good as the com plete graph. J. Comput. Syst. Sci. 39,205-219 (1989)
9. Das, G., Joseph, D.: Which triangulations approximate the complete graph? In: Proceedings of the International Symposium on Optimal Algorithms. Lecture Notes in Computer Science, vol.401, pp. 168-192. Springer, Berlin (1989)
10. Dobkin,D.P., Friedman, S.J., Supowit, K.J.:Delaunay graphs are almost as good as complete graphs. Discret. Comput. Geom. 5, 399^07(1990)
11. Drysdale, R.L., McElfresh, S., Snoeyink, J.S.: On exclusion regions for optimal triangulations. Discrete Appl. Math. 109, 49-65(2001)
12. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete Comput. Geom. 7, 13-28(1992)
13. Lee, A.W.: Diamonds are a plane graph's best friend. Master's thesis, School of Computer Science, Carleton University, Ottawa (2004)
14. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8,251-256 (1992)
15. Li, X.-Y., Wang, Y.: Efficient construction of low weighted bounded degree planar spanner. Int. J. Comput. Geom. Appl. 14,69-84(2004)
16. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge, UK (2007)