Circular perfect graph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Circular perfect graph''' --- цикловой совершенный граф. A graph <math>G</math> is called '''circular perfect''' if <math>\omega_{c}(H) =…») |
KVN (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Circular perfect graph''' | '''Circular perfect graph''' — ''[[цикловой совершенный граф]].'' | ||
A graph <math>G</math> is called '''circular perfect''' if <math>\omega_{c}(H) = | A [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is called '''circular perfect''' if <math>\,\omega_{c}(H) = \chi_{c}(H)</math> for each [[induced (with vertices) subgraph|induced subgraph]] <math>\,H</math> of <math>\,G</math>, where <math>\,\omega_{c}</math> is the ''[[circular clique number]]'' and <math>\,\chi_{c}</math> is the ''[[circular chromatic number]]''. | ||
\chi_{c}(H)</math> for each induced subgraph <math>H</math> of <math>G</math>, where <math>\omega_{c}</math> | |||
is the ''circular clique number'' and <math>\chi_{c}</math> is the ''circular chromatic number''. | |||
The concept of a circular perfect graph was introduced by Zhu in | The concept of a circular perfect graph was introduced by Zhu in 2004. | ||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 10:44, 24 октября 2018
Circular perfect graph — цикловой совершенный граф.
A graph [math]\displaystyle{ \,G }[/math] is called circular perfect if [math]\displaystyle{ \,\omega_{c}(H) = \chi_{c}(H) }[/math] for each induced subgraph [math]\displaystyle{ \,H }[/math] of [math]\displaystyle{ \,G }[/math], where [math]\displaystyle{ \,\omega_{c} }[/math] is the circular clique number and [math]\displaystyle{ \,\chi_{c} }[/math] is the circular chromatic number.
The concept of a circular perfect graph was introduced by Zhu in 2004.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.