Cactus: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Cactus''' --- кактус, дерево Хусими. A graph <math>G</math> is a '''сactus''' if every its edge is a part of at most one cycle in <math>G</ma…») |
KVN (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Cactus''' | '''Cactus''' — ''[[кактус]], [[дерево Хусими]].'' | ||
A graph <math>G</math> is a '''сactus''' if every its edge is a part of at most one cycle in <math>G</math>. | A [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is a '''сactus''' if every its [[edge]] is a part of at most one [[cycle]] in <math>\,G</math>. | ||
Cactus graphs are ''outerplanar'' since they cannot contain <math>K_{4}</math> | Cactus graphs are ''[[outerplanar graph|outerplanar]]'' since they cannot contain <math>\,K_{4}</math> | ||
or <math>K_{2,3}</math> as a ''minor''. Cactus graphs have treewidth <math>\leq 2</math>. | or <math>\,K_{2,3}</math> as a ''[[minor of a graph|minor]]''. Cactus graphs have [[treewidth of a graph|treewidth]] <math>\leq 2</math>. | ||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 10:44, 24 октября 2018
Cactus — кактус, дерево Хусими.
A graph [math]\displaystyle{ \,G }[/math] is a сactus if every its edge is a part of at most one cycle in [math]\displaystyle{ \,G }[/math]. Cactus graphs are outerplanar since they cannot contain [math]\displaystyle{ \,K_{4} }[/math] or [math]\displaystyle{ \,K_{2,3} }[/math] as a minor. Cactus graphs have treewidth [math]\displaystyle{ \leq 2 }[/math].
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.