Квантование цепей Маркова: различия между версиями
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
(не показаны 22 промежуточные версии 1 участника) | |||
Строка 5: | Строка 5: | ||
'''Пространственный поиск и процессы блуждания''' | '''Пространственный поиск и процессы блуждания''' | ||
''Пространственный поиск'' посредством ''квантового блуждания'' представляет собой поиск в базе данных с дополнительным ограничением, заключающимся в том, что перемещение по пространству поиска происходит путем квантового блуждания, подчиняющегося некоторой структуре локальности (решетка, гиперкуб и т .д.). Квантовые блуждания являются аналогами классических случайных блужданий на графах. Сложность пространственного поиска с помощью квантового блуждания определяется главным образом ''квантовым временем достижения цели'' [9] данного блуждания. | ''Пространственный поиск'' посредством ''квантового блуждания'' представляет собой поиск в базе данных с дополнительным ограничением, заключающимся в том, что перемещение по пространству поиска происходит путем ''квантового блуждания'', подчиняющегося некоторой структуре локальности (решетка, гиперкуб и т .д.). Квантовые блуждания являются аналогами классических случайных блужданий на графах. Сложность пространственного поиска с помощью квантового блуждания определяется главным образом ''квантовым временем достижения цели'' [9] данного блуждания. | ||
Пусть S, |S| = N, – конечное множество ''состояний'', и пусть <math>P = (p_{x, y})_{x, y \in S}</math> – ''матрица вероятностей перехода'' для ''цепи Маркова'' на S, также обозначаемая P. Предположим, что подмножество состояний <math>M \subseteq S</math> ''помечено''. Задача состоит в том, чтобы найти помеченное состояние, учитывая, что <math>M \ne \empty</math> (''версия с поиском''), | Пусть S, |S| = N, – конечное множество ''состояний'', и пусть <math>P = (p_{x, y})_{x, y \in S}</math> – ''матрица вероятностей перехода'' для ''цепи Маркова'' на S, также обозначаемая P. Предположим, что подмножество состояний <math>M \subseteq S</math> ''помечено''. Задача состоит в том, чтобы либо найти помеченное состояние, учитывая, что <math>M \ne \empty</math> (''версия с поиском''), либо определить, является ли M непустым (''версия с принятием решений''). Если возможные перемещения <math>x \to y</math> (т. е. те, при которых <math>p_{x, y} \ne 0)</math> образуют ребра (ориентированного) графа G, то говорится, что блуждание имеет ''структуру локальности'' G. | ||
Строка 24: | Строка 24: | ||
'''Алгоритм квантового блуждания''' | '''Алгоритм квантового блуждания''' | ||
Квантование P является нетривиальной задачей, поскольку стохастические матрицы не имеют непосредственных унитарных эквивалентов. Оказывается, что нужно либо отказаться от дискретно-временной природы блуждания [7], либо определить оператор блуждания на пространстве, отличном от <math>\mathbf{C}^S</math>. Здесь выбран второй путь, нотация которого соответствует изложенной в работе [18]. На <math>\mathbf{C}^{S \times S}</math> определим унитарный оператор <math>W_P := R_1 R_2</math>, где <math>R_1 = \sum_{x \in S} (2 | p_x \rangle \langle p_x | - I) \otimes | x \rangle \langle x |</math>, <math>R_2 = \sum_{x \in S} | x \rangle \langle x | \otimes (2 | p_x \rangle \langle p_x | - I)</math>, <math> | p_x \rangle := \sum_{y \in S} \sqrt{p_{y, x}} | y \rangle</math>. <math>W_P</math> – это ''квантование'' P, или оператор ''квантового блуждания в дискретном времени'', вытекающий из P. «Проверить», помечено ли текущее состояние, можно при помощи оператора <math>O_M = \sum_{x \notin M} | x \rangle \langle x | - \sum_{x \in M} | x \rangle \langle x |</math>. Обозначим стоимость построения <math>W_P</math> (в единицах интересующего ресурса) как U (''update cost'' – стоимость обновления), стоимость построения <math>O_M</math> как C (''checking cost'' – стоимость проверки), а стоимость подготовки начального состояния, <math>\phi_0</math>, как S (''setup cost'' – стоимость настройки). Каждый раз, когда оператор используется, его стоимость прибавляется к общим затратам. Эта абстракция, неявная в [2] и явная в [13], позволяет рассматривать <math>W_P</math> и <math>O_M</math> как операторы типа «черный ящик» и обеспечивает удобный способ учета ''временной сложности'' или, в модели квантовых запросов, ''сложности | Квантование P является нетривиальной задачей, поскольку стохастические матрицы не имеют непосредственных унитарных эквивалентов. Оказывается, что нужно либо отказаться от дискретно-временной природы блуждания [7], либо определить оператор блуждания на пространстве, отличном от <math>\mathbf{C}^S</math>. Здесь выбран второй путь, нотация которого соответствует изложенной в работе [18]. На <math>\mathbf{C}^{S \times S}</math> определим унитарный оператор <math>W_P := R_1 R_2</math>, где <math>R_1 = \sum_{x \in S} (2 | p_x \rangle \langle p_x | - I) \otimes | x \rangle \langle x |</math>, <math>R_2 = \sum_{x \in S} | x \rangle \langle x | \otimes (2 | p_x \rangle \langle p_x | - I)</math>, <math> | p_x \rangle := \sum_{y \in S} \sqrt{p_{y, x}} | y \rangle</math>. <math>W_P</math> – это ''квантование'' P, или оператор ''квантового блуждания в дискретном времени'', вытекающий из P. «Проверить», помечено ли текущее состояние, можно при помощи оператора <math>O_M = \sum_{x \notin M} | x \rangle \langle x | - \sum_{x \in M} | x \rangle \langle x |</math>. Обозначим стоимость построения <math>W_P</math> (в единицах интересующего ресурса) как U (''update cost'' – стоимость обновления), стоимость построения <math>O_M</math> как C (''checking cost'' – стоимость проверки), а стоимость подготовки начального состояния, <math>\phi_0</math>, как S (''setup cost'' – стоимость настройки). Каждый раз, когда оператор используется, его стоимость прибавляется к общим затратам. Эта абстракция, неявная в [2] и явная в [13], позволяет рассматривать <math>W_P</math> и <math>O_M</math> как операторы типа «черный ящик» и обеспечивает удобный способ учета ''временной сложности'' или, в модели квантовых запросов, ''сложности в виде числа запросов''. Алгоритм пространственного поиска с помощью квантового блуждания описывается следующим образом: | ||
Строка 38: | Строка 38: | ||
Квантовые блуждания были впервые введены Дэвидом Мейером и Джоном Уотроусом для изучения квантовых клеточных автоматов и квантового логарифмического пространства, соответственно. Квантовые блуждания в дискретном времени исследовали Наяк и др. [3, 15], а также Ахаронов и др. [1] на бесконечной линии и N-цикле, соответственно. Центральными темами в первые годы развития концепции квантовых блужданий были определение оператора блуждания, понятия времени перемешивания и времени достижения цели, а также достижимое ускорение по сравнению с классической постановкой задачи. Экспоненциальное квантовое ускорение времени достижения между антиподами гиперкуба было показано Кемпе [9], а Чайлдс и коллеги [6] представили первую задачу с оракулом, решаемую экспоненциально быстрее алгоритмом, основанным на квантовых блужданиях, чем любым (не обязательно основанным на блужданиях) классическим алгоритмом. | Квантовые блуждания были впервые введены Дэвидом Мейером и Джоном Уотроусом для изучения квантовых клеточных автоматов и квантового логарифмического пространства, соответственно. Квантовые блуждания в дискретном времени исследовали Наяк и др. [3, 15], а также Ахаронов и др. [1] на бесконечной линии и N-цикле, соответственно. Центральными темами в первые годы развития концепции квантовых блужданий были определение оператора блуждания, понятия времени перемешивания и времени достижения цели, а также достижимое ускорение по сравнению с классической постановкой задачи. Экспоненциальное квантовое ускорение времени достижения между антиподами гиперкуба было показано Кемпе [9], а Чайлдс и коллеги [6] представили первую задачу с оракулом, решаемую экспоненциально быстрее алгоритмом, основанным на квантовых блужданиях, чем любым (не обязательно основанным на блужданиях) классическим алгоритмом. | ||
Авторами первых систематических исследований квантового времени достижения на гиперкубе и d-мерном торе были Шенви и др. [17], а также Амбайнис и др. [4]. Улучшая алгоритм пространственного поиска Ааронсона и Амбайниса, основанный на алгоритме поиска Гровера, Амбайнис и др. [4] показали, что d-мерный тор (с <math>N = n^d</math> узлами) может быть исследован с помощью квантового блуждания со стоимостью порядка <math>S + \sqrt{N}(U + C)</math> и вероятностью наблюдения <math>\Omega(1 / log N)</math> для <math>d \ge 3</math>, и со стоимостью порядка <math>S + \sqrt{N log N}(U + C)</math> и вероятностью наблюдения <math>\Omega(1)</math> для <math>d = 2</math>. Ключевое отличие этих результатов от результатов | Авторами первых систематических исследований квантового времени достижения на гиперкубе и d-мерном торе были Шенви и др. [17], а также Амбайнис и др. [4]. Улучшая алгоритм пространственного поиска Ааронсона и Амбайниса, основанный на алгоритме поиска Гровера, Амбайнис и др. [4] показали, что d-мерный тор (с <math>N = n^d</math> узлами) может быть исследован с помощью квантового блуждания со стоимостью порядка <math>S + \sqrt{N}(U + C)</math> и вероятностью наблюдения <math>\Omega(1 / log N)</math> для <math>d \ge 3</math>, и со стоимостью порядка <math>S + \sqrt{N log N}(U + C)</math> и вероятностью наблюдения <math>\Omega(1)</math> для <math>d = 2</math>. Ключевое отличие этих результатов от результатов работ [6, 9] заключается в том, что блуждание должно начинаться из однородного состояния, а не из того, которое каким-то образом «связано» с состоянием, в которое мы хотим попасть. Только в последнем случае можно достичь экспоненциального ускорения. | ||
Первый результат, который использовал квантовое блуждание для решения естественной алгоритмической задачи, так называемой ''задачи | Первый результат, который использовал квантовое блуждание для решения естественной алгоритмической задачи, так называемой ''задачи различения элементов'', принадлежит Амбайнису [2]. Алгоритм Амбайниса использует блуждание W по ''графу Джонсона'' J(r, m), вершинами которого являются подмножества размера r из совокупности размера m, причем два подмножества связаны в том и только том случае, если их симметрическая разность имеет величину 2. Актуальность этого графа вытекает из нетривиальной алгоритмической идеи, согласно которой три различные стоимости (S, U и C) уравновешиваются новым способом. В отличие от этого, алгоритм Гровера – хотя он и вдохновил результат Амбайниса – не предполагает такой возможности: в его случае затраты на установку и обновление в модели запросов равны нулю. | ||
Главное математическое наблюдение Амбайниса о блуждании W по графу Джонсона состоит в том, что <math>W^{\sqrt{r}} O_M</math> ведет себя примерно так же, как и <math>DO_M</math> итерации Гровера, где D – оператор диффузии Гровера. Вспомним, что алгоритм Гровера применяет <math>DO_M</math> многократно, переводя однородное начальное состояние | Главное математическое наблюдение Амбайниса о блуждании W по графу Джонсона состоит в том, что <math>W^{\sqrt{r}} O_M</math> ведет себя примерно так же, как и <math>DO_M</math> итерации Гровера, где D – оператор диффузии Гровера. Вспомним, что алгоритм Гровера применяет <math>DO_M</math> многократно, переводя однородное начальное состояние <math>\phi_0</math> в состояние <math>\phi_{good} = \sum_{x \in M} \sqrt{1 / |M| | x \rangle }</math> после <math>t = O(1/ \alpha)</math> итераций, где <math>\alpha := 2 sin^{-1} \langle \phi_{good} | \phi_0 \rangle </math> – эффективный «угол поворота». | ||
Что общего между | Что общего между <math>W^{\sqrt{r}}</math> и <math>D</math>? Амбайнис показал, что нетривиальные собственные значения матрицы <math>W^{\sqrt{r}}</math> в подпространстве (конечной размерности), содержащем орбиту <math>\phi_0</math>, удалены от 1 на константную величину <math>\varepsilon</math>. Таким образом, <math>W^{\sqrt{r}}</math> служит очень хорошим приближенным отражением вдоль оси <math>\phi_0</math> – не менее хорошим, чем у Гровера в этом варианте применения. Это позволяет вывести следующее заключение: существует <math>t = O(1/ \alpha)</math>, для которого перекрытие <math>\langle \phi_{good} | (W^{\sqrt{r}} O_M)^t | \phi_0 \rangle = \Omega(1)</math>, поэтому выходное значение, вероятно, находится в M. | ||
Теорема 1 [2]. Пусть Р – случайное блуждание по графу Джонсона J(r | '''Теорема 1 [2]. Пусть Р – случайное блуждание по графу Джонсона J(r, m), r = o(m); пусть M – либо пустое множество, либо множество всех подмножеств размера r, содержащих фиксированное подмножество <math>x_1, ..., x_k</math> при константном <math>k \le r</math>. Тогда существует квантовый алгоритм, решающий задачу достижения (версия с поиском) со стоимостью порядка <math>S + t(\sqrt{r} \cdot U + C)</math>, где <math>t = \bigg( \frac{m}{r} \bigg)^{k/2}</math>. Если стоимости равны S = r, U = O(1) и C = 0, то суммарная стоимость имеет оптимум <math>O(m^{k/(k+1)})</math> при <math>r = O(m^{k/(k+1)})</math>.''' | ||
Строка 58: | Строка 58: | ||
Для цепи Маркова P (классическое) среднее время достижения относительно M может быть выражено в терминах матрицы блужданий с утечкой | Для цепи Маркова P (классическое) ''среднее время достижения'' относительно M может быть выражено в терминах ''матрицы блужданий с утечкой'' <math>P_M</math>, которая получается из P путем удаления всех строк и столбцов, индексированных состояниями M. Обозначим за h(x, M) ожидаемое время достижения M из x, а за <math>v_i, ...., v_{N - |M|}, \lambda_1, ..., \lambda_{N - |M|}</math> – (нормализованные) собственные векторы и соответствующие собственные значения <math>P_M</math>. Обозначим за <math>d : S \to \mathbf{R}^+</math> начальное распределение, а за d' – его ограничение на S \ M. Тогда <math>h := \sum_{x \in S} d(x) h(x, M) = \sum_{k = 1}^{N - |M|} \frac{|v_k, d'|^2}{1 - \lambda_k}</math>. Хотя матрица блужданий с утечкой <math>P_M</math> не является стохастической, можно рассмотреть матрицу ''поглощающих блужданий'' <math>P' = \begin{bmatrix} | ||
P_M & 0 \\ | |||
P'' & I | |||
\end{bmatrix}</math>, где P" – матрица, полученная из P удалением столбцов, индексированных M, и строк, индексированных S \ M. P' ведет себя аналогично P, но поглощается первым помеченным состоянием, которого достигает. Рассмотрим квантование <math>W_{P'}</math> матрицы P' и определим ''квантовое время достижения'', H, множества M как наименьшее m, для которого <math>|W^m_{P'} \phi_0 - \phi_0| \ge 0.1</math>, где <math>\phi_0 := \sum_{x \in S} \sqrt{1/N} |x \rangle | p_x \rangle</math> (которое является стационарным для <math>W_P</math>). Заметим, что стоимость построения <math>W_{P'}</math> пропорциональна U + C. | |||
Почему определение квантового времени достижения настолько интересно? Классическое время достижения измеряет количество итераций блуждания с поглощением | Почему это определение квантового времени достижения настолько интересно? Классическое время достижения измеряет количество итераций блуждания с поглощением P', необходимое для заметного перекоса равномерного начального распределения. Аналогичным образом квантовое время достижения ограничивает число итераций следующего квантового алгоритма, служащего для определения того, является ли M непустым. На каждом шаге применяем оператор <math>W_{P'}</math>. Если M пусто, то P' = P и начальное состояние остается неизменным. Если M непусто, то угол между <math>W^t_{P'} \phi_0</math> и <math>W^t_P \phi_0</math> постепенно увеличивается. Используя дополнительный ''регистр управления'' для применения либо <math>W_{P'}</math>, либо <math>W_P</math> с квантовым управлением, можно определить расхождение этих двух состояний (если M непусто). Необходимое число итераций в точности равно H. | ||
Остается вычислить H. Когда P симметрично и ''эргодично'', выражение для классического времени достижения цели имеет квантовый аналог [8] (|M| <math>\le</math>N/2 по техническим причинам): | |||
Теорема 2 [18]. Пусть P симметрично и эргодично, и пусть h – классическое время достижения для помеченного множества M и равномерного начального распределения. Тогда квантовое время достижения для M не превышает | (1) <math>H \le \sum_{k = 1}^{N - |M|} \frac{\nu^2_k}{\sqrt{1 - \lambda_k}}</math>, | ||
где <math>\nu_k</math> – сумма координат <math>v_k</math>, деленная на <math>1/\sqrt{N}</math>. Из (1) и выражения для h можно вывести удивительную связь между классическим и квантовым временем достижения: | |||
'''Теорема 2 [18]. Пусть P симметрично и эргодично, и пусть h – классическое время достижения для помеченного множества M и равномерного начального распределения. Тогда квантовое время достижения для M не превышает <math>\sqrt{h}</math>.''' | |||
Строка 73: | Строка 80: | ||
Теорема 3 [18]. Если P является транзитивным по состоянию и | '''Теорема 3 [18]. Если P является транзитивным по состоянию и |M| = 1, то помеченное состояние наблюдается за <math>O(\sqrt{h})</math> шагов с вероятностью не менее N/h.''' | ||
Из теорем 2 и 3 вытекает большинство результатов предыдущего раздела о квантовом времени достижения цели без вычислений, опираясь только на оценки соответствующих классических алгоритмов времени достижения. Выражение (1) основано на фундаментальной связи между собственными значениями и собственными векторами P и | Из теорем 2 и 3 вытекает большинство результатов предыдущего раздела о квантовом времени достижения цели ''без вычислений'', опираясь только на оценки соответствующих классических алгоритмов времени достижения. Выражение (1) основано на фундаментальной связи между собственными значениями и собственными векторами P и <math>W_P</math>. Заметим, что <math>R_1</math> и <math>R_2</math> являются отражениями на подпространствах, порожденных <math> \{ |p_x \rangle \otimes | x \rangle | x \in S \}</math> и <math> \{ |x \rangle \otimes | p_x \rangle | x \in S \}</math>, соответственно. Следовательно, собственные значения <math>R_1 R_2</math> могут быть выражены в терминах собственных значений взаимной матрицы Грама этих систем. Эта матрица D, ''матрица дискриминантов'' P, имеет вид: | ||
(2) <math> D(P) = \sqrt{P \circ P_T} \; \stackrel{\mathrm{def}}{=} \; (\sqrt{p_{x, y} p_{y, x}})_{x, y \in S}.</math> | |||
Если P симметрична, то D(P) = P, и формула остается достаточно простой даже тогда, когда P не симметрична. В частности, блуждание с поглощением P' имеет матрицу дискриминантов <math>\begin{bmatrix} | |||
P_M & 0 \\ | |||
0 & I | |||
\end{bmatrix}</math>. Наконец, отношение между D(P) и спектральным разложением <math>W_P</math> задается следующим образом: | |||
Теорема 4 [18]. Пусть P – произвольная цепь Маркова на конечном пространстве состояний S, и пусть cos | |||
'''Теорема 4 [18]. Пусть P – произвольная цепь Маркова на конечном пространстве состояний S, и пусть <math>cos \; \theta_1 \ge ... \ge cos \; \theta_l</math> – сингулярные значения D(P), лежащие в открытом интервале (0, 1), с соответствующими парами сингулярных векторов <math>v_j, w_j</math> для <math>1 \le j \le l</math>. Тогда нетривиальные собственные значения <math>W_P</math> (исключая 1 и -1) и соответствующие им собственные векторы имеют вид <math>e^{- 2i \theta_j}, R_1 w_j - e^{-i \theta_j} R_2 v_j; e^{2i \theta_j}, R_1 w_j - e^{i \theta_j} R_2 v_j</math> для <math>1 \le j \le l</math>.''' | |||
'''Недавние разработки''' | '''Недавние разработки''' | ||
Маньез и коллеги [ ] использовали выполненное Шегеди квантование | Маньез и коллеги [12] использовали выполненное Шегеди квантование <math>W_P</math> эргодического блуждания P (а не его версии с поглощением P') для получения эффективной и общей реализации алгоритма абстрактного поиска Амбайниса и др. [4]. | ||
Теорема 5 [ ]. Пусть P обратима и эргодична со спектральным разрывом | '''Теорема 5 [12]. Пусть P обратима и эргодична со спектральным разрывом <math>\delta > 0</math>. Пусть M имеет помеченную вероятность, равную нулю либо <math> \varepsilon > 0</math>. Тогда существует квантовый алгоритм, решающий задачу достижения цели (версия с поиском) со стоимостью <math>S + \frac{1}{\sqrt{\varepsilon}} \bigg( \frac{1}{\sqrt{\delta}} U + C \bigg)</math>. | ||
== Применение == | == Применение == | ||
''' | '''Различение элементов''' | ||
Предположим, что даны элементы | Предположим, что даны элементы <math>x_1, ..., x_m \in \{ 1, ..., m \}</math> и нужно узнать, существуют ли i, j такие, что <math>x_i = x_j</math>. Сложность классического подхода к выполнению этого запроса равна <math>\Theta(m)</math>. Амбайнис [2] предложил (оптимальный) квантовый алгоритм запросов со сложностью <math>O(m^{2/3})</math>, использующий квантовое блуждание по графу Джонсона, состоящему из <math>m^{2/3}</math>-подмножеств <math>\{ 1, ..., m \}</math>, в котором подмножества, которые содержат i, j с <math>x_i = x_j</math>, помечены. | ||
'''Поиск треугольника''' | '''Поиск треугольника''' | ||
Предположим, дана матрица смежности A графа с n вершинами и требуется определить, содержит ли граф треугольник (т.е. клику | Предположим, что дана матрица смежности A графа с n вершинами и требуется определить, содержит ли граф треугольник (т.е. клику размера 3), используя как можно меньше запросов к элементам A. Сложность классического подхода к решению этой задачи равна <math>\Theta(n^2)</math>. Маньез, Санта и Шегеди [13] предложили алгоритм со сложностью <math>\tilde{O}(n^{1,3})</math>, адаптировав решение из [2]. Маньез и др. улучшили ее до <math>O(n^{1,3})</math> в работе [12]. | ||
'''Верификация матричного произведения''' | '''Верификация матричного произведения''' | ||
Предположим, даны три | Предположим, что даны три матрицы A, B, C размера <math>n \times n</math> и требуется определить, верно ли соотношение <math>AB \ne C</math> (то есть, существуют ли i,j такие, что <math>\sum_k A_{ik} B_{kj} \ne C_{ij}</math>), используя как можно меньше запросов к элементам A, B и C. Сложность классического подхода к решению этой задачи равна <math>\Theta(n^2)</math>. Бурман и Шпалек [5] предложили квантовый алгоритм выполнения запросов со сложностью <math>O(n^{5/3})</math>, используя результаты из [18]. | ||
'''Проверка коммутативности группы''' | '''Проверка коммутативности группы''' | ||
Предположим, что имеется группа типа «черный ящик», заданная k генераторами, и требуется определить, коммутативна ли эта группа, используя как можно меньше запросов к операции группового произведения (т. е. запросов вида «Чему равно произведение элементов g и h?»). Сложность классического подхода к решению этой задачи составляет | Предположим, что имеется группа типа «черный ящик», заданная k генераторами, и требуется определить, коммутативна ли эта группа, используя как можно меньше запросов к операции группового произведения (т. е. запросов вида «Чему равно произведение элементов g и h?»). Сложность классического подхода к решению этой задачи составляет <math>\Theta(k)</math> групповых операций. Маньез и Наяк [11] предложили (практически оптимальный) <math>\tilde{O}(k^{2/3})</math> квантовый алгоритм выполнения запросов путем блуждания по произведению двух графов, вершины которых являются (упорядоченными) l-кортежами различных генераторов, у которого вероятности перехода являются ненулевыми только там, где l-кортежи в двух конечных точках отличаются не более чем по одной координате. | ||
== Открытые вопросы == | |||
Многие вопросы квантования цепей Маркова остаются нерешенными – как для задачи достижения цели, так и для тесно связанной с ней задачи перемешивания. | Многие вопросы квантования цепей Маркова остаются нерешенными – как для задачи достижения цели, так и для тесно связанной с ней задачи перемешивания. | ||
Строка 119: | Строка 130: | ||
'''Достижение цели''' | '''Достижение цели''' | ||
Можно ли распространить квадратичное ускорение квантового времени достижения со всех симметричных цепей Маркова на все обратимые? Можно ли распространить нижнюю границу вероятности наблюдения из [ ] за пределы класса транзитивных по состоянию цепей Маркова с единственным помеченным состоянием? Какие еще алгоритмические приложения квантового времени достижения можно найти? | Можно ли распространить квадратичное ускорение квантового алгоритма времени достижения со всех симметричных цепей Маркова на все обратимые? Можно ли распространить нижнюю границу вероятности наблюдения из [18] за пределы класса транзитивных по состоянию цепей Маркова с единственным помеченным состоянием? Какие еще алгоритмические приложения квантового алгоритма времени достижения можно найти? | ||
'''Перемешивание''' | '''Перемешивание''' | ||
Еще одной сферой широкого применения цепей Маркова в классических алгоритмах является перемешивание. В частности, алгоритмы Марковской цепи в методе Монте-Карло работают путем запуска эргодической цепи Маркова с тщательно выбранным стационарным распределением | Еще одной сферой широкого применения цепей Маркова в классических алгоритмах является ''перемешивание''. В частности, алгоритмы ''Марковской цепи в методе Монте-Карло'' работают путем запуска эргодической цепи Маркова с тщательно выбранным стационарным распределением <math>\pi</math> до достижения ''времени перемешивания''; в этот момент распределение текущего состояния гарантированно <math>\varepsilon</math>-близко к равномерному. Такие алгоритмы лежат в основе большинства рандомизированных алгоритмов для аппроксимации #P-полных задач. Таким образом, задача выглядит следующим образом: | ||
Дано: цепь Маркова P на множестве S, допуск | '''Дано:''' цепь Маркова P на множестве S, допуск <math>\varepsilon > 0</math>. | ||
Требуется: найти состояние, | '''Требуется''': найти состояние, <math>\varepsilon</math>-близкое к <math>\pi</math> по суммарному вариационному расстоянию. | ||
Понятия квантового времени | Понятия квантового времени перемешивания на линии, цикле и гиперкубе впервые предложили и проанализировали Наяк и др. [3, 15], Ахаронов и др. [1], а также Мур и Расселл [14]. В работах Кендон и Трегенны [10] и Рихтера [16] исследовалось использование декогеренции для улучшения перемешивания квантовых блужданий [10]. Остаются открытыми два фундаментальных вопроса о времени квантового перемешивания: как выглядит «наиболее естественное» определение и когда имеет место квантовое ускорение по сравнению с временем перемешивания в классических подходах? | ||
== См. также == | == См. также == | ||
Строка 175: | Строка 185: | ||
18. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. FOCS (2004) | 18. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. FOCS (2004) | ||
[[Категория: Совместное определение связанных терминов]] |
Текущая версия от 11:55, 7 декабря 2024
Ключевые слова и синонимы
Квантовые блуждания
Постановка задачи
Пространственный поиск и процессы блуждания
Пространственный поиск посредством квантового блуждания представляет собой поиск в базе данных с дополнительным ограничением, заключающимся в том, что перемещение по пространству поиска происходит путем квантового блуждания, подчиняющегося некоторой структуре локальности (решетка, гиперкуб и т .д.). Квантовые блуждания являются аналогами классических случайных блужданий на графах. Сложность пространственного поиска с помощью квантового блуждания определяется главным образом квантовым временем достижения цели [9] данного блуждания.
Пусть S, |S| = N, – конечное множество состояний, и пусть [math]\displaystyle{ P = (p_{x, y})_{x, y \in S} }[/math] – матрица вероятностей перехода для цепи Маркова на S, также обозначаемая P. Предположим, что подмножество состояний [math]\displaystyle{ M \subseteq S }[/math] помечено. Задача состоит в том, чтобы либо найти помеченное состояние, учитывая, что [math]\displaystyle{ M \ne \empty }[/math] (версия с поиском), либо определить, является ли M непустым (версия с принятием решений). Если возможные перемещения [math]\displaystyle{ x \to y }[/math] (т. е. те, при которых [math]\displaystyle{ p_{x, y} \ne 0) }[/math] образуют ребра (ориентированного) графа G, то говорится, что блуждание имеет структуру локальности G.
Дано: Марковская цепь P на множестве S, помеченное подмножество [math]\displaystyle{ M \subseteq S }[/math].
Требуется: найти помеченное состояние с вероятностью 0.1, если оно существует (версия с поиском), или булево возвращаемое значение с односторонней ошибкой, обнаруживающее [math]\displaystyle{ M \ne \empty }[/math] с вероятностью 0.1 (версия с принятием решений).
Если P несводима (т. е. если лежащий в ее основе орграф является сильно связным), то помеченное состояние может быть найдено с высокой вероятностью за конечное время путем имитации классического случайного блуждания с использованием коэффициентов P. В квантовом случае этот процесс случайного блуждания может быть заменен квантовым блужданием с использованием коэффициентов P (в частности, с соблюдением локальности).
Фундаментальный вопрос заключается в том, находит ли процесс квантового блуждания помеченное состояние быстрее, чем классический процесс случайного блуждания.
Алгоритм квантового блуждания
Квантование P является нетривиальной задачей, поскольку стохастические матрицы не имеют непосредственных унитарных эквивалентов. Оказывается, что нужно либо отказаться от дискретно-временной природы блуждания [7], либо определить оператор блуждания на пространстве, отличном от [math]\displaystyle{ \mathbf{C}^S }[/math]. Здесь выбран второй путь, нотация которого соответствует изложенной в работе [18]. На [math]\displaystyle{ \mathbf{C}^{S \times S} }[/math] определим унитарный оператор [math]\displaystyle{ W_P := R_1 R_2 }[/math], где [math]\displaystyle{ R_1 = \sum_{x \in S} (2 | p_x \rangle \langle p_x | - I) \otimes | x \rangle \langle x | }[/math], [math]\displaystyle{ R_2 = \sum_{x \in S} | x \rangle \langle x | \otimes (2 | p_x \rangle \langle p_x | - I) }[/math], [math]\displaystyle{ | p_x \rangle := \sum_{y \in S} \sqrt{p_{y, x}} | y \rangle }[/math]. [math]\displaystyle{ W_P }[/math] – это квантование P, или оператор квантового блуждания в дискретном времени, вытекающий из P. «Проверить», помечено ли текущее состояние, можно при помощи оператора [math]\displaystyle{ O_M = \sum_{x \notin M} | x \rangle \langle x | - \sum_{x \in M} | x \rangle \langle x | }[/math]. Обозначим стоимость построения [math]\displaystyle{ W_P }[/math] (в единицах интересующего ресурса) как U (update cost – стоимость обновления), стоимость построения [math]\displaystyle{ O_M }[/math] как C (checking cost – стоимость проверки), а стоимость подготовки начального состояния, [math]\displaystyle{ \phi_0 }[/math], как S (setup cost – стоимость настройки). Каждый раз, когда оператор используется, его стоимость прибавляется к общим затратам. Эта абстракция, неявная в [2] и явная в [13], позволяет рассматривать [math]\displaystyle{ W_P }[/math] и [math]\displaystyle{ O_M }[/math] как операторы типа «черный ящик» и обеспечивает удобный способ учета временной сложности или, в модели квантовых запросов, сложности в виде числа запросов. Алгоритм пространственного поиска с помощью квантового блуждания описывается следующим образом:
АЛГОРИТМ: Квантовая схема [math]\displaystyle{ X = X_m X_{m - 1} ... X_1 }[/math], с «проводами» (обычно их два), которые переносят [math]\displaystyle{ \mathbf{C}^S }[/math] и управляющие биты. Каждый элемент [math]\displaystyle{ X_i }[/math] является либо [math]\displaystyle{ W_P }[/math]-вентилем, либо [math]\displaystyle{ O_M }[/math]-вентилем, либо управляемой версией одного из них. X применяется к начальному состоянию [math]\displaystyle{ \phi_0 }[/math]. Стоимость последовательности равна сумме стоимостей отдельных операторов. Вероятность наблюдения – это вероятность того, что после измерения конечного состояния, [math]\displaystyle{ \phi_m }[/math], в стандартном базисе, один из проводов выводит элемент из М. Если вероятность наблюдения равна q, необходимо повторить процедуру 1/[math]\displaystyle{ \sqrt q }[/math] раз, используя усиление по амплитуде (версия с поиском). В версии с принятием решений можно отличить М от М', если [math]\displaystyle{ | X \phi_0 - X' \phi_0 | \ge 0.1 }[/math], где Х выводится из [math]\displaystyle{ O_M }[/math], а Х' из [math]\displaystyle{ O_{M'} }[/math].
Основные результаты
Первоначальные результаты
Пространственный поиск сочетает алгоритм поиска Гровера [8], который находит помеченный элемент в базе данных размера N за [math]\displaystyle{ \sqrt{N / |M|} }[/math] шагов, с квантовыми блужданиями.
Квантовые блуждания были впервые введены Дэвидом Мейером и Джоном Уотроусом для изучения квантовых клеточных автоматов и квантового логарифмического пространства, соответственно. Квантовые блуждания в дискретном времени исследовали Наяк и др. [3, 15], а также Ахаронов и др. [1] на бесконечной линии и N-цикле, соответственно. Центральными темами в первые годы развития концепции квантовых блужданий были определение оператора блуждания, понятия времени перемешивания и времени достижения цели, а также достижимое ускорение по сравнению с классической постановкой задачи. Экспоненциальное квантовое ускорение времени достижения между антиподами гиперкуба было показано Кемпе [9], а Чайлдс и коллеги [6] представили первую задачу с оракулом, решаемую экспоненциально быстрее алгоритмом, основанным на квантовых блужданиях, чем любым (не обязательно основанным на блужданиях) классическим алгоритмом.
Авторами первых систематических исследований квантового времени достижения на гиперкубе и d-мерном торе были Шенви и др. [17], а также Амбайнис и др. [4]. Улучшая алгоритм пространственного поиска Ааронсона и Амбайниса, основанный на алгоритме поиска Гровера, Амбайнис и др. [4] показали, что d-мерный тор (с [math]\displaystyle{ N = n^d }[/math] узлами) может быть исследован с помощью квантового блуждания со стоимостью порядка [math]\displaystyle{ S + \sqrt{N}(U + C) }[/math] и вероятностью наблюдения [math]\displaystyle{ \Omega(1 / log N) }[/math] для [math]\displaystyle{ d \ge 3 }[/math], и со стоимостью порядка [math]\displaystyle{ S + \sqrt{N log N}(U + C) }[/math] и вероятностью наблюдения [math]\displaystyle{ \Omega(1) }[/math] для [math]\displaystyle{ d = 2 }[/math]. Ключевое отличие этих результатов от результатов работ [6, 9] заключается в том, что блуждание должно начинаться из однородного состояния, а не из того, которое каким-то образом «связано» с состоянием, в которое мы хотим попасть. Только в последнем случае можно достичь экспоненциального ускорения.
Первый результат, который использовал квантовое блуждание для решения естественной алгоритмической задачи, так называемой задачи различения элементов, принадлежит Амбайнису [2]. Алгоритм Амбайниса использует блуждание W по графу Джонсона J(r, m), вершинами которого являются подмножества размера r из совокупности размера m, причем два подмножества связаны в том и только том случае, если их симметрическая разность имеет величину 2. Актуальность этого графа вытекает из нетривиальной алгоритмической идеи, согласно которой три различные стоимости (S, U и C) уравновешиваются новым способом. В отличие от этого, алгоритм Гровера – хотя он и вдохновил результат Амбайниса – не предполагает такой возможности: в его случае затраты на установку и обновление в модели запросов равны нулю.
Главное математическое наблюдение Амбайниса о блуждании W по графу Джонсона состоит в том, что [math]\displaystyle{ W^{\sqrt{r}} O_M }[/math] ведет себя примерно так же, как и [math]\displaystyle{ DO_M }[/math] итерации Гровера, где D – оператор диффузии Гровера. Вспомним, что алгоритм Гровера применяет [math]\displaystyle{ DO_M }[/math] многократно, переводя однородное начальное состояние [math]\displaystyle{ \phi_0 }[/math] в состояние [math]\displaystyle{ \phi_{good} = \sum_{x \in M} \sqrt{1 / |M| | x \rangle } }[/math] после [math]\displaystyle{ t = O(1/ \alpha) }[/math] итераций, где [math]\displaystyle{ \alpha := 2 sin^{-1} \langle \phi_{good} | \phi_0 \rangle }[/math] – эффективный «угол поворота».
Что общего между [math]\displaystyle{ W^{\sqrt{r}} }[/math] и [math]\displaystyle{ D }[/math]? Амбайнис показал, что нетривиальные собственные значения матрицы [math]\displaystyle{ W^{\sqrt{r}} }[/math] в подпространстве (конечной размерности), содержащем орбиту [math]\displaystyle{ \phi_0 }[/math], удалены от 1 на константную величину [math]\displaystyle{ \varepsilon }[/math]. Таким образом, [math]\displaystyle{ W^{\sqrt{r}} }[/math] служит очень хорошим приближенным отражением вдоль оси [math]\displaystyle{ \phi_0 }[/math] – не менее хорошим, чем у Гровера в этом варианте применения. Это позволяет вывести следующее заключение: существует [math]\displaystyle{ t = O(1/ \alpha) }[/math], для которого перекрытие [math]\displaystyle{ \langle \phi_{good} | (W^{\sqrt{r}} O_M)^t | \phi_0 \rangle = \Omega(1) }[/math], поэтому выходное значение, вероятно, находится в M.
Теорема 1 [2]. Пусть Р – случайное блуждание по графу Джонсона J(r, m), r = o(m); пусть M – либо пустое множество, либо множество всех подмножеств размера r, содержащих фиксированное подмножество [math]\displaystyle{ x_1, ..., x_k }[/math] при константном [math]\displaystyle{ k \le r }[/math]. Тогда существует квантовый алгоритм, решающий задачу достижения (версия с поиском) со стоимостью порядка [math]\displaystyle{ S + t(\sqrt{r} \cdot U + C) }[/math], где [math]\displaystyle{ t = \bigg( \frac{m}{r} \bigg)^{k/2} }[/math]. Если стоимости равны S = r, U = O(1) и C = 0, то суммарная стоимость имеет оптимум [math]\displaystyle{ O(m^{k/(k+1)}) }[/math] при [math]\displaystyle{ r = O(m^{k/(k+1)}) }[/math].
Цепи Маркова общего вида
В работе [18] Шегеди исследует время достижения для квантовых блужданий, порождаемых цепями Маркова общего вида. Его определения (оператор блуждания, время достижения) непосредственно выводятся из [2] и согласуются с предыдущими исследованиями, хотя их представление несколько отличается.
Для цепи Маркова P (классическое) среднее время достижения относительно M может быть выражено в терминах матрицы блужданий с утечкой [math]\displaystyle{ P_M }[/math], которая получается из P путем удаления всех строк и столбцов, индексированных состояниями M. Обозначим за h(x, M) ожидаемое время достижения M из x, а за [math]\displaystyle{ v_i, ...., v_{N - |M|}, \lambda_1, ..., \lambda_{N - |M|} }[/math] – (нормализованные) собственные векторы и соответствующие собственные значения [math]\displaystyle{ P_M }[/math]. Обозначим за [math]\displaystyle{ d : S \to \mathbf{R}^+ }[/math] начальное распределение, а за d' – его ограничение на S \ M. Тогда [math]\displaystyle{ h := \sum_{x \in S} d(x) h(x, M) = \sum_{k = 1}^{N - |M|} \frac{|v_k, d'|^2}{1 - \lambda_k} }[/math]. Хотя матрица блужданий с утечкой [math]\displaystyle{ P_M }[/math] не является стохастической, можно рассмотреть матрицу поглощающих блужданий [math]\displaystyle{ P' = \begin{bmatrix}
P_M & 0 \\
P'' & I
\end{bmatrix} }[/math], где P" – матрица, полученная из P удалением столбцов, индексированных M, и строк, индексированных S \ M. P' ведет себя аналогично P, но поглощается первым помеченным состоянием, которого достигает. Рассмотрим квантование [math]\displaystyle{ W_{P'} }[/math] матрицы P' и определим квантовое время достижения, H, множества M как наименьшее m, для которого [math]\displaystyle{ |W^m_{P'} \phi_0 - \phi_0| \ge 0.1 }[/math], где [math]\displaystyle{ \phi_0 := \sum_{x \in S} \sqrt{1/N} |x \rangle | p_x \rangle }[/math] (которое является стационарным для [math]\displaystyle{ W_P }[/math]). Заметим, что стоимость построения [math]\displaystyle{ W_{P'} }[/math] пропорциональна U + C.
Почему это определение квантового времени достижения настолько интересно? Классическое время достижения измеряет количество итераций блуждания с поглощением P', необходимое для заметного перекоса равномерного начального распределения. Аналогичным образом квантовое время достижения ограничивает число итераций следующего квантового алгоритма, служащего для определения того, является ли M непустым. На каждом шаге применяем оператор [math]\displaystyle{ W_{P'} }[/math]. Если M пусто, то P' = P и начальное состояние остается неизменным. Если M непусто, то угол между [math]\displaystyle{ W^t_{P'} \phi_0 }[/math] и [math]\displaystyle{ W^t_P \phi_0 }[/math] постепенно увеличивается. Используя дополнительный регистр управления для применения либо [math]\displaystyle{ W_{P'} }[/math], либо [math]\displaystyle{ W_P }[/math] с квантовым управлением, можно определить расхождение этих двух состояний (если M непусто). Необходимое число итераций в точности равно H.
Остается вычислить H. Когда P симметрично и эргодично, выражение для классического времени достижения цели имеет квантовый аналог [8] (|M| [math]\displaystyle{ \le }[/math]N/2 по техническим причинам):
(1) [math]\displaystyle{ H \le \sum_{k = 1}^{N - |M|} \frac{\nu^2_k}{\sqrt{1 - \lambda_k}} }[/math],
где [math]\displaystyle{ \nu_k }[/math] – сумма координат [math]\displaystyle{ v_k }[/math], деленная на [math]\displaystyle{ 1/\sqrt{N} }[/math]. Из (1) и выражения для h можно вывести удивительную связь между классическим и квантовым временем достижения:
Теорема 2 [18]. Пусть P симметрично и эргодично, и пусть h – классическое время достижения для помеченного множества M и равномерного начального распределения. Тогда квантовое время достижения для M не превышает [math]\displaystyle{ \sqrt{h} }[/math].
Далее можно показать следующие результаты:
Теорема 3 [18]. Если P является транзитивным по состоянию и |M| = 1, то помеченное состояние наблюдается за [math]\displaystyle{ O(\sqrt{h}) }[/math] шагов с вероятностью не менее N/h.
Из теорем 2 и 3 вытекает большинство результатов предыдущего раздела о квантовом времени достижения цели без вычислений, опираясь только на оценки соответствующих классических алгоритмов времени достижения. Выражение (1) основано на фундаментальной связи между собственными значениями и собственными векторами P и [math]\displaystyle{ W_P }[/math]. Заметим, что [math]\displaystyle{ R_1 }[/math] и [math]\displaystyle{ R_2 }[/math] являются отражениями на подпространствах, порожденных [math]\displaystyle{ \{ |p_x \rangle \otimes | x \rangle | x \in S \} }[/math] и [math]\displaystyle{ \{ |x \rangle \otimes | p_x \rangle | x \in S \} }[/math], соответственно. Следовательно, собственные значения [math]\displaystyle{ R_1 R_2 }[/math] могут быть выражены в терминах собственных значений взаимной матрицы Грама этих систем. Эта матрица D, матрица дискриминантов P, имеет вид:
(2) [math]\displaystyle{ D(P) = \sqrt{P \circ P_T} \; \stackrel{\mathrm{def}}{=} \; (\sqrt{p_{x, y} p_{y, x}})_{x, y \in S}. }[/math]
Если P симметрична, то D(P) = P, и формула остается достаточно простой даже тогда, когда P не симметрична. В частности, блуждание с поглощением P' имеет матрицу дискриминантов [math]\displaystyle{ \begin{bmatrix}
P_M & 0 \\
0 & I
\end{bmatrix} }[/math]. Наконец, отношение между D(P) и спектральным разложением [math]\displaystyle{ W_P }[/math] задается следующим образом:
Теорема 4 [18]. Пусть P – произвольная цепь Маркова на конечном пространстве состояний S, и пусть [math]\displaystyle{ cos \; \theta_1 \ge ... \ge cos \; \theta_l }[/math] – сингулярные значения D(P), лежащие в открытом интервале (0, 1), с соответствующими парами сингулярных векторов [math]\displaystyle{ v_j, w_j }[/math] для [math]\displaystyle{ 1 \le j \le l }[/math]. Тогда нетривиальные собственные значения [math]\displaystyle{ W_P }[/math] (исключая 1 и -1) и соответствующие им собственные векторы имеют вид [math]\displaystyle{ e^{- 2i \theta_j}, R_1 w_j - e^{-i \theta_j} R_2 v_j; e^{2i \theta_j}, R_1 w_j - e^{i \theta_j} R_2 v_j }[/math] для [math]\displaystyle{ 1 \le j \le l }[/math].
Недавние разработки
Маньез и коллеги [12] использовали выполненное Шегеди квантование [math]\displaystyle{ W_P }[/math] эргодического блуждания P (а не его версии с поглощением P') для получения эффективной и общей реализации алгоритма абстрактного поиска Амбайниса и др. [4].
Теорема 5 [12]. Пусть P обратима и эргодична со спектральным разрывом [math]\displaystyle{ \delta \gt 0 }[/math]. Пусть M имеет помеченную вероятность, равную нулю либо [math]\displaystyle{ \varepsilon \gt 0 }[/math]. Тогда существует квантовый алгоритм, решающий задачу достижения цели (версия с поиском) со стоимостью [math]\displaystyle{ S + \frac{1}{\sqrt{\varepsilon}} \bigg( \frac{1}{\sqrt{\delta}} U + C \bigg) }[/math].
Применение
Различение элементов
Предположим, что даны элементы [math]\displaystyle{ x_1, ..., x_m \in \{ 1, ..., m \} }[/math] и нужно узнать, существуют ли i, j такие, что [math]\displaystyle{ x_i = x_j }[/math]. Сложность классического подхода к выполнению этого запроса равна [math]\displaystyle{ \Theta(m) }[/math]. Амбайнис [2] предложил (оптимальный) квантовый алгоритм запросов со сложностью [math]\displaystyle{ O(m^{2/3}) }[/math], использующий квантовое блуждание по графу Джонсона, состоящему из [math]\displaystyle{ m^{2/3} }[/math]-подмножеств [math]\displaystyle{ \{ 1, ..., m \} }[/math], в котором подмножества, которые содержат i, j с [math]\displaystyle{ x_i = x_j }[/math], помечены.
Поиск треугольника
Предположим, что дана матрица смежности A графа с n вершинами и требуется определить, содержит ли граф треугольник (т.е. клику размера 3), используя как можно меньше запросов к элементам A. Сложность классического подхода к решению этой задачи равна [math]\displaystyle{ \Theta(n^2) }[/math]. Маньез, Санта и Шегеди [13] предложили алгоритм со сложностью [math]\displaystyle{ \tilde{O}(n^{1,3}) }[/math], адаптировав решение из [2]. Маньез и др. улучшили ее до [math]\displaystyle{ O(n^{1,3}) }[/math] в работе [12].
Верификация матричного произведения
Предположим, что даны три матрицы A, B, C размера [math]\displaystyle{ n \times n }[/math] и требуется определить, верно ли соотношение [math]\displaystyle{ AB \ne C }[/math] (то есть, существуют ли i,j такие, что [math]\displaystyle{ \sum_k A_{ik} B_{kj} \ne C_{ij} }[/math]), используя как можно меньше запросов к элементам A, B и C. Сложность классического подхода к решению этой задачи равна [math]\displaystyle{ \Theta(n^2) }[/math]. Бурман и Шпалек [5] предложили квантовый алгоритм выполнения запросов со сложностью [math]\displaystyle{ O(n^{5/3}) }[/math], используя результаты из [18].
Проверка коммутативности группы
Предположим, что имеется группа типа «черный ящик», заданная k генераторами, и требуется определить, коммутативна ли эта группа, используя как можно меньше запросов к операции группового произведения (т. е. запросов вида «Чему равно произведение элементов g и h?»). Сложность классического подхода к решению этой задачи составляет [math]\displaystyle{ \Theta(k) }[/math] групповых операций. Маньез и Наяк [11] предложили (практически оптимальный) [math]\displaystyle{ \tilde{O}(k^{2/3}) }[/math] квантовый алгоритм выполнения запросов путем блуждания по произведению двух графов, вершины которых являются (упорядоченными) l-кортежами различных генераторов, у которого вероятности перехода являются ненулевыми только там, где l-кортежи в двух конечных точках отличаются не более чем по одной координате.
Открытые вопросы
Многие вопросы квантования цепей Маркова остаются нерешенными – как для задачи достижения цели, так и для тесно связанной с ней задачи перемешивания.
Достижение цели
Можно ли распространить квадратичное ускорение квантового алгоритма времени достижения со всех симметричных цепей Маркова на все обратимые? Можно ли распространить нижнюю границу вероятности наблюдения из [18] за пределы класса транзитивных по состоянию цепей Маркова с единственным помеченным состоянием? Какие еще алгоритмические приложения квантового алгоритма времени достижения можно найти?
Перемешивание
Еще одной сферой широкого применения цепей Маркова в классических алгоритмах является перемешивание. В частности, алгоритмы Марковской цепи в методе Монте-Карло работают путем запуска эргодической цепи Маркова с тщательно выбранным стационарным распределением [math]\displaystyle{ \pi }[/math] до достижения времени перемешивания; в этот момент распределение текущего состояния гарантированно [math]\displaystyle{ \varepsilon }[/math]-близко к равномерному. Такие алгоритмы лежат в основе большинства рандомизированных алгоритмов для аппроксимации #P-полных задач. Таким образом, задача выглядит следующим образом:
Дано: цепь Маркова P на множестве S, допуск [math]\displaystyle{ \varepsilon \gt 0 }[/math].
Требуется: найти состояние, [math]\displaystyle{ \varepsilon }[/math]-близкое к [math]\displaystyle{ \pi }[/math] по суммарному вариационному расстоянию.
Понятия квантового времени перемешивания на линии, цикле и гиперкубе впервые предложили и проанализировали Наяк и др. [3, 15], Ахаронов и др. [1], а также Мур и Расселл [14]. В работах Кендон и Трегенны [10] и Рихтера [16] исследовалось использование декогеренции для улучшения перемешивания квантовых блужданий [10]. Остаются открытыми два фундаментальных вопроса о времени квантового перемешивания: как выглядит «наиболее естественное» определение и когда имеет место квантовое ускорение по сравнению с временем перемешивания в классических подходах?
См. также
Литература
1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proc. STOC (2001)
2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210-239 (2007). Preliminary version in Proc. FOCS 2004
3. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proc. STOC (2001)
4. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proc. SODA (2005)
5. Buhrman, H., Spalek, R.: Quantum verification of matrix products. In: Proc. SODA (2006)
6. Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by a quantum walk. In: Proc. STOC (2003)
7. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58 (1998)
8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. STOC (1996)
9. Kempe, J.: Discrete quantum walks hit exponentially faster. In: Proc. RANDOM (2003)
10. Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A. 67,42-315 (2003)
11. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. Algorithmica 48(3), 221-232 (2007) Preliminary version in Proc. ICALP 2005
12. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proc. STOC (2007)
13. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413-424 (2007) Preliminary version in Proc. SODA 2005
14. Moore, C., Russell, A.: Quantum walks on the hypercube. In: Proc. RANDOM (2002)
15. Nayak, A., Vishwanath, A.: Quantum walk on the line. quant-ph/0010117
16. Richter, P.C.: Quantum speedup of classical mixing processes. Phys. Rev. A 76,042306 (2007)
17. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm. Phys. Rev. A 67, 52-307 (2003)
18. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. FOCS (2004)