Bondy--Chvtal closure operation: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Новая страница: «'''Bondy--Chv\'{a}tal closure operation''' --- операция замыкания Бонди-Хватала. Given a graph of order <math>n</math>, repeat the fo…»)
 
Нет описания правки
 
(не показана 1 промежуточная версия 1 участника)
Строка 1: Строка 1:
'''Bondy--Chv\'{a}tal closure operation''' --- операция замыкания
'''<math>Bondy-Chv\acute{a}tal</math> closure operation''' операция замыкания
Бонди-Хватала.  
Бонди-Хватала.  


Given a graph of order <math>n</math>,  repeat the following operation as long as
Given a graph of order <math>\,n</math>,  repeat the following operation as long as
possible. For each pair of nonadjacent vertices <math>a</math> and <math>b</math>,  if <math>d(a)
possible. For each pair of nonadjacent vertices <math>a</math> and <math>\,b</math>,  if <math>d(a)
+ d(b) \geq n</math>,  then add the edge <math>ab</math> to <math>G</math>.  We denote by  <math>cl(G)</math>
+ d(b) \geq n</math>,  then add the edge <math>\,ab</math> to <math>G</math>.  We denote by  <math>\,cl(G)</math>
the resulting graph and call it the '''Bondy--Chv\'{a'''tal closure} of
the resulting graph and call it the '''<math>Bondy-Chv\acute{a}tal</math> closure''' of
<math>G</math>.
<math>\,G</math>.
 
The other name is '''Hamiltonian closure'''.

Текущая версия от 17:40, 3 мая 2011

[math]\displaystyle{ Bondy-Chv\acute{a}tal }[/math] closure operation — операция замыкания Бонди-Хватала.

Given a graph of order [math]\displaystyle{ \,n }[/math], repeat the following operation as long as possible. For each pair of nonadjacent vertices [math]\displaystyle{ a }[/math] and [math]\displaystyle{ \,b }[/math], if [math]\displaystyle{ d(a) + d(b) \geq n }[/math], then add the edge [math]\displaystyle{ \,ab }[/math] to [math]\displaystyle{ G }[/math]. We denote by [math]\displaystyle{ \,cl(G) }[/math] the resulting graph and call it the [math]\displaystyle{ Bondy-Chv\acute{a}tal }[/math] closure of [math]\displaystyle{ \,G }[/math].

The other name is Hamiltonian closure.