Крупноблочная схема программ: различия между версиями
KVN (обсуждение | вклад) |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Крупноблочная схема программ''' (''[[Large-block program schemata]]'') | '''Крупноблочная схема программ''' (''[[Large-block program schemata]]'') — | ||
операторная ''[[схема программ]]'', которая рассматривает моделируемую программу в виде совокупности структурных операторов, обрабатывающих структурные значения совокупности переменных. Введена в литературу В.Н.Касьяновым в 1980 г. | операторная ''[[схема программ]]'', которая рассматривает моделируемую программу в виде совокупности структурных операторов, обрабатывающих структурные значения совокупности переменных. Введена в литературу В.Н.Касьяновым в 1980 г. | ||
Базис <math>\Sigma</math>, над которым строятся схемы, содержит символы переменных, операций, доступов, предикатов выполнимости, выбора и операндов: обязательных и необязательных входов и выходов. Крупноблочная схема <math>\alpha</math> | Базис <math>\,\Sigma</math>, над которым строятся схемы, содержит символы переменных, операций, доступов, предикатов выполнимости, выбора и операндов: обязательных и необязательных входов и выходов. Крупноблочная схема <math>\,\alpha</math> — это тройка | ||
<math>(G_{\alpha}, R_{\alpha},\Omega_{\alpha}),</math> | <math>\,(G_{\alpha}, R_{\alpha},\Omega_{\alpha}),</math> | ||
в которой <math>G_{\alpha}</math> | в которой <math>\,G_{\alpha}</math> — | ||
''[[управляющий граф]]'' (''[[уграф]]''), <math>R_{\alpha}</math> | ''[[управляющий граф]]'' (''[[уграф]]''), <math>\,R_{\alpha}</math> — [[раскраска]] операндов операторов из <math>\,G_{\alpha},</math> сопоставляющая с каждым операндом некоторую переменную, а <math>\,\Omega_{\alpha}</math> — множество интерпретаций. | ||
Переменные, поставленные в соответствие входам операторов, называются их ''[[аргумент оператора|аргументами]]'', а выходам | Переменные, поставленные в соответствие входам операторов, называются их ''[[аргумент оператора|аргументами]]'', а выходам — ''[[результат оператора|результатами]]''. Аргументы и результаты разделяются на ''[[обязательный аргумент|обязательные]]'' и ''[[необязательный аргумент|необязательные]]'' в зависимости от того, являются ли таковыми операнды, с которыми они сопоставлены. | ||
Каждая интерпретация <math>I\in\Omega_{\alpha}</math> | Каждая интерпретация <math>\,I\in\Omega_{\alpha}</math> — это совокупность, состоящая из ''области интерпретации'' <math>\,D_I</math> и двух функций. Одна из них ставит в соответствие элементам базиса | ||
<math>\Sigma</math> элементы <math>D_I</math> и функции, заданные на <math>D^r_I</math>, а вторая | <math>\,\Sigma</math> элементы <math>\,D_I</math> и функции, заданные на <math>\,D^r_I</math>, а вторая — выделяет используемые и неиспользуемые части аргументов интерпретирующих функций при вычислении указанных частей их результатов. Предполагается, что <math>\,D_I</math> может содержать как простые значения, так и составные. Каждое из составных значений — это множество упорядоченных пар элементов из <math>\,D_I</math>, попарно различающихся по первым компонентам и называемых именами. Таким образом, одно значение может образовывать нетривиальную часть другого значения с некоторым адресом, представляющим собой последовательность имен. | ||
Оператор (в общем случае) | Оператор (в общем случае) — это совокупность, состоящая из ''[[слово применимости|слова применимости]]'' — выражения, описывающего условия применимости оператора и построенного из обязательных входов и операций, ''[[слово выбора|слова выбора]]'' — выражения, построенного из входов и операций и описывающего правила выбора той из исходящих дуг, по которой будет осуществлен переход, а также из множества обязательных и необязательных присваиваний, описывающих правила перевычисления состояния памяти. ''Обязательное присваивание'' имеет вид <math>\,a:=F</math>, где <math>\,a</math> — получатель (обязательный выход), а <math>\,F</math> — источник, представляющий собой выражение, построенное из входов и операций и описывающее правило вычисления значения, которое будет присвоено переменной <math>\,R(a)</math>. ''Необязательное присваивание'' имеет вид | ||
<math>g(F_1,\ldots, F_r, F, a),</math> | <math>g(F_1,\ldots, F_r, F, a),</math> | ||
где <math>g</math> | где <math>\,g</math> — символ доступа, <math>\,a</math> — получатель (необязательный выход), <math>\,F</math> — источник, <math>F_1,\ldots,F_r</math> — ключи, представляющие собой выражения, построенные из входов и операций. В зависимости от интерпретации <math>\,g</math> и текущих значений ключей определены используемые и неиспользуемые части переменной <math>\,x=R(a)</math>. Необязательное присваивание сохраняет значения используемой части <math>\,x</math> и перевычисляет неиспользуемую часть <math>\,x</math>, размещая в ней используемые части значения результата источника. | ||
[[Файл:Large-block program schemata.png|700px]] | [[Файл:Large-block program schemata.png|700px]] | ||
Крупноблочная модель программ вместе с концепцией крупноблочного моделирования одних схем другими дает единую позицию для комплексного исследования оптимизирующих преобразований программ со структурами данных и действий и их применения в системах конструирования программ. Существенными свойствами, отличающими класс крупноблочных схем от других моделей программ, являются его универсальность в смысле широты описания класса последовательных программ и способов их оптимизации, а также его полнота | Крупноблочная модель программ вместе с концепцией крупноблочного моделирования одних схем другими дает единую позицию для комплексного исследования оптимизирующих преобразований программ со структурами данных и действий и их применения в системах конструирования программ. Существенными свойствами, отличающими класс крупноблочных схем от других моделей программ, являются его универсальность в смысле широты описания класса последовательных программ и способов их оптимизации, а также его полнота — возможность построения по любой крупноблочной схеме (в частности, программе) и любому ее укрупнению операторов и переменных такой другой крупноблочной схемы, которая моделирует исходную при заданном ее укрупнении. | ||
==См. также== | ==См. также== | ||
''[[Неинтерпретированные схемы]], [[Стандартные схемы]], [[Схема программ]], [[Схема с косвенной адресацией]], [[Схема с распределенной памятью]], [[Схемы Мартынюка]].'' | * ''[[Неинтерпретированные схемы]],'' | ||
* ''[[Стандартные схемы]],'' | |||
* ''[[Схема программ]],'' | |||
* ''[[Схема с косвенной адресацией]],'' | |||
* ''[[Схема с распределенной памятью]],'' | |||
* ''[[Схемы Мартынюка]].'' | |||
==Литература== | ==Литература== | ||
* Касьянов В.Н. Теоретико-графовые задачи анализа управляющих графов транслируемых программ // Исследования по прикладной теории графов. — Новосибирск: Наука. Сиб. отд-ние, 1986. | |||
* Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988. | |||
[[Категория:Теория схем программ]] | [[Категория:Теория схем программ]] |
Текущая версия от 11:26, 18 апреля 2011
Крупноблочная схема программ (Large-block program schemata) — операторная схема программ, которая рассматривает моделируемую программу в виде совокупности структурных операторов, обрабатывающих структурные значения совокупности переменных. Введена в литературу В.Н.Касьяновым в 1980 г.
Базис [math]\displaystyle{ \,\Sigma }[/math], над которым строятся схемы, содержит символы переменных, операций, доступов, предикатов выполнимости, выбора и операндов: обязательных и необязательных входов и выходов. Крупноблочная схема [math]\displaystyle{ \,\alpha }[/math] — это тройка
[math]\displaystyle{ \,(G_{\alpha}, R_{\alpha},\Omega_{\alpha}), }[/math]
в которой [math]\displaystyle{ \,G_{\alpha} }[/math] — управляющий граф (уграф), [math]\displaystyle{ \,R_{\alpha} }[/math] — раскраска операндов операторов из [math]\displaystyle{ \,G_{\alpha}, }[/math] сопоставляющая с каждым операндом некоторую переменную, а [math]\displaystyle{ \,\Omega_{\alpha} }[/math] — множество интерпретаций.
Переменные, поставленные в соответствие входам операторов, называются их аргументами, а выходам — результатами. Аргументы и результаты разделяются на обязательные и необязательные в зависимости от того, являются ли таковыми операнды, с которыми они сопоставлены.
Каждая интерпретация [math]\displaystyle{ \,I\in\Omega_{\alpha} }[/math] — это совокупность, состоящая из области интерпретации [math]\displaystyle{ \,D_I }[/math] и двух функций. Одна из них ставит в соответствие элементам базиса [math]\displaystyle{ \,\Sigma }[/math] элементы [math]\displaystyle{ \,D_I }[/math] и функции, заданные на [math]\displaystyle{ \,D^r_I }[/math], а вторая — выделяет используемые и неиспользуемые части аргументов интерпретирующих функций при вычислении указанных частей их результатов. Предполагается, что [math]\displaystyle{ \,D_I }[/math] может содержать как простые значения, так и составные. Каждое из составных значений — это множество упорядоченных пар элементов из [math]\displaystyle{ \,D_I }[/math], попарно различающихся по первым компонентам и называемых именами. Таким образом, одно значение может образовывать нетривиальную часть другого значения с некоторым адресом, представляющим собой последовательность имен.
Оператор (в общем случае) — это совокупность, состоящая из слова применимости — выражения, описывающего условия применимости оператора и построенного из обязательных входов и операций, слова выбора — выражения, построенного из входов и операций и описывающего правила выбора той из исходящих дуг, по которой будет осуществлен переход, а также из множества обязательных и необязательных присваиваний, описывающих правила перевычисления состояния памяти. Обязательное присваивание имеет вид [math]\displaystyle{ \,a:=F }[/math], где [math]\displaystyle{ \,a }[/math] — получатель (обязательный выход), а [math]\displaystyle{ \,F }[/math] — источник, представляющий собой выражение, построенное из входов и операций и описывающее правило вычисления значения, которое будет присвоено переменной [math]\displaystyle{ \,R(a) }[/math]. Необязательное присваивание имеет вид
[math]\displaystyle{ g(F_1,\ldots, F_r, F, a), }[/math]
где [math]\displaystyle{ \,g }[/math] — символ доступа, [math]\displaystyle{ \,a }[/math] — получатель (необязательный выход), [math]\displaystyle{ \,F }[/math] — источник, [math]\displaystyle{ F_1,\ldots,F_r }[/math] — ключи, представляющие собой выражения, построенные из входов и операций. В зависимости от интерпретации [math]\displaystyle{ \,g }[/math] и текущих значений ключей определены используемые и неиспользуемые части переменной [math]\displaystyle{ \,x=R(a) }[/math]. Необязательное присваивание сохраняет значения используемой части [math]\displaystyle{ \,x }[/math] и перевычисляет неиспользуемую часть [math]\displaystyle{ \,x }[/math], размещая в ней используемые части значения результата источника.
Крупноблочная модель программ вместе с концепцией крупноблочного моделирования одних схем другими дает единую позицию для комплексного исследования оптимизирующих преобразований программ со структурами данных и действий и их применения в системах конструирования программ. Существенными свойствами, отличающими класс крупноблочных схем от других моделей программ, являются его универсальность в смысле широты описания класса последовательных программ и способов их оптимизации, а также его полнота — возможность построения по любой крупноблочной схеме (в частности, программе) и любому ее укрупнению операторов и переменных такой другой крупноблочной схемы, которая моделирует исходную при заданном ее укрупнении.
См. также
- Неинтерпретированные схемы,
- Стандартные схемы,
- Схема программ,
- Схема с косвенной адресацией,
- Схема с распределенной памятью,
- Схемы Мартынюка.
Литература
- Касьянов В.Н. Теоретико-графовые задачи анализа управляющих графов транслируемых программ // Исследования по прикладной теории графов. — Новосибирск: Наука. Сиб. отд-ние, 1986.
- Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988.