Регулярные множества: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
Нет описания правки
Строка 21: Строка 21:
точности регулярные множества. Среди них ---
точности регулярные множества. Среди них ---
[[регулярные выражения|''регулярные выражения'']], [[праволинейная грамматика|''праволинейные грамматики'']],
[[регулярные выражения|''регулярные выражения'']], [[праволинейная грамматика|''праволинейные грамматики'']],
[[регулярные грамматики|''регулярные грамматики'']], [[конечный автомат|''конечные автоматы'']],
[[регулярная грамматика|''регулярные грамматики'']], [[конечный автомат|''конечные автоматы'']],
[[детерминированный конечный автомат|''детерминированные конечные автоматы'']].
[[детерминированный конечный автомат|''детерминированные конечные автоматы'']].



Версия от 22:16, 3 июня 2009

Регулярные множества (Regular sets) - класс языков, занимающий центральное положение по отношению к значительной части теории формальных языков.

Пусть [math]\displaystyle{ \Sigma }[/math] --- некоторый алфавит. Регулярное множество в алфавите [math]\displaystyle{ \Sigma }[/math] определяется рекурсивно следующим образом:

(1) пустое множество [math]\displaystyle{ \emptyset }[/math], множество [math]\displaystyle{ \{e\} }[/math] состоящее из одной пустой цепочки [math]\displaystyle{ e }[/math], а также множество [math]\displaystyle{ \{a\} }[/math]для каждого элемента [math]\displaystyle{ a\in\Sigma }[/math] --- регулярные множества в алфавите [math]\displaystyle{ \Sigma }[/math];

(2) если [math]\displaystyle{ P,Q }[/math] --- регулярные множества в алфавите [math]\displaystyle{ \Sigma }[/math], то регулярными являются множества [math]\displaystyle{ P\cup Q }[/math], [math]\displaystyle{ PQ }[/math] и [math]\displaystyle{ P^* }[/math];

(3) других регулярных множеств в алфавите [math]\displaystyle{ \Sigma }[/math] нет.

Используется несколько методов задания языков, каждый из которых определяет в точности регулярные множества. Среди них --- регулярные выражения, праволинейные грамматики, регулярные грамматики, конечные автоматы, детерминированные конечные автоматы.

Литература

[Ахо-Ульман],

[Касьянов/95]