1294
правки
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
(не показано 7 промежуточных версий 1 участника) | |||
Строка 86: | Строка 86: | ||
''' | '''Практичное алгоритмическое охлаждение''' | ||
Концепция алгоритмического охлаждения привела к созданию практически применимых алгоритмов [8] для охлаждения ''небольших молекул''. Чтобы увидеть влияние практического алгоритмического охлаждения, лучше всего использовать другой вариант энтропийного предела. Рассмотрим систему, содержащую n частиц с полуцелыми спинами с суммарной энтропией, превышающей <math>n - 1</math>, так что нет возможности охладить даже один спин до нулевой температуры. В этом случае энтропийный предел является результатом сжатия энтропии в <math>n - 1</math> полностью случайных спинов, так что оставшаяся на последнем спине энтропия минимальна. Энтропия оставшегося одиночного спина удовлетворяет соотношению <math>H(single) \ge 1 - n \epsilon^2 / ln \; 4</math>, поэтому его поляризация может быть улучшена, самое большее, до | Концепция алгоритмического охлаждения привела к созданию практически применимых алгоритмов [8] для охлаждения ''небольших молекул''. Чтобы увидеть влияние практического алгоритмического охлаждения, лучше всего использовать другой вариант энтропийного предела. Рассмотрим систему, содержащую n частиц с полуцелыми спинами с суммарной энтропией, превышающей <math>n - 1</math>, так что нет возможности охладить даже один спин до нулевой температуры. В этом случае энтропийный предел является результатом сжатия энтропии в <math>n - 1</math> полностью случайных спинов, так что оставшаяся на последнем спине энтропия минимальна. Энтропия оставшегося одиночного спина удовлетворяет соотношению <math>H(single) \ge 1 - n \epsilon^2 / ln \; 4</math>, поэтому его поляризация может быть улучшена, самое большее, до | ||
Строка 93: | Строка 93: | ||
Практичное алгоритмическое охлаждение (PAC), предложенное Фернандесом, Ллойдом, Мором и Ройчоудхури в [8], показало потенциал для применения в ЯМР-спектроскопии в ближайшем будущем. В частности, авторы представили алгоритм под названием PAC2, который использует любое (нечетное) число спинов n, такое, что один из них является сбрасывающим спином, а (n - 1) – вычислительными. Алгоритм PAC2 охлаждает спины так, что самый холодный из них может (приблизительно) достичь усиления смещения в <math>(3/2)^{(n - 1)/2}</math> раз. Приближение справедливо до тех пор, пока конечное смещение <math>(3/2)^{(n - 1)/2} \epsilon</math> много меньше 1. В противном случае необходимо проводить более точную обработку. Это доказывает экспоненциальное преимущество алгоритмического охлаждения перед наилучшим возможным обратимым вариантом алгоритмического охлаждения, поскольку такие обратимые методы охлаждения, например, из [13, 14], ограничены улучшением смещения не более чем в <math>\sqrt{n}</math> раз. PAC можно применять при малых n (например, в диапазоне | Практичное алгоритмическое охлаждение (PAC), предложенное Фернандесом, Ллойдом, Мором и Ройчоудхури в [8], показало потенциал для применения в ЯМР-спектроскопии в ближайшем будущем. В частности, авторы представили алгоритм под названием PAC2, который использует любое (нечетное) число спинов n, такое, что один из них является сбрасывающим спином, а (n - 1) – вычислительными. Алгоритм PAC2 охлаждает спины так, что самый холодный из них может (приблизительно) достичь усиления смещения в <math>(3/2)^{(n - 1)/2}</math> раз. Приближение справедливо до тех пор, пока конечное смещение <math>(3/2)^{(n - 1)/2} \epsilon</math> много меньше 1. В противном случае необходимо проводить более точную обработку. Это доказывает экспоненциальное преимущество алгоритмического охлаждения перед наилучшим возможным обратимым вариантом алгоритмического охлаждения, поскольку такие обратимые методы охлаждения, например, из [13, 14], ограничены улучшением смещения не более чем в <math>\sqrt{n}</math> раз. PAC можно применять при малых n (например, в диапазоне 10–20), и поэтому он потенциально подходит для перспективного применения [6, 8, 10] в химической и медико-биологической ЯМР-спектроскопии. | ||
Строка 101: | Строка 101: | ||
'''Исчерпывающее алгоритмическое охлаждение''' | '''Исчерпывающее алгоритмическое охлаждение''' | ||
Далее был проанализирован алгоритм охлаждения, в котором этапы охлаждения (сброс и обратимое поляризационное сжатие) повторяются произвольное число раз. Фактически это идеализация, когда неограниченное число шагов сброса и | Далее был проанализирован алгоритм охлаждения, в котором этапы охлаждения (сброс и обратимое поляризационное сжатие) повторяются произвольное число раз. Фактически это идеализация, когда неограниченное число шагов сброса и логических шагов может быть применено без ошибок или рассогласования, а вычислительные кубиты не теряют своих поляризационных смещений. Фернандес [7] рассмотрел два вычислительных спина и один сбрасываемый спин (наименьший значащий бит, а именно кубит с правой стороны в нотации матрицы плотности тензорного произведения) и проанализировал оптимальное охлаждение этой системы. Исчерпывающим образом повторяя сброс и сжатие, он обнаружил, что граница конечных смещений трех спинов приблизительно равна {2, 1, 1} в единицах <math>\epsilon</math> – поляризационного смещения сбрасывающего спина. | ||
Мор и Вайнштейн обобщили этот анализ и обнаружили, что n - 1 вычислительных спинов и один сбрасывающий спин могут быть охлаждены (приблизительно) до смещений в соответствии с рядом Фибоначчи: {... 34, 21, 13, 8, 5, 3, 2, 1, 1}. Вычислительный спин, наиболее удаленный от сбрасывающего спина, может быть охлажден до соответствующего числа Фибоначчи | Мор и Вайнштейн обобщили этот анализ и обнаружили, что n - 1 вычислительных спинов и один сбрасывающий спин могут быть охлаждены (приблизительно) до смещений в соответствии с рядом Фибоначчи: {... 34, 21, 13, 8, 5, 3, 2, 1, 1}. Вычислительный спин, наиболее удаленный от сбрасывающего спина, может быть охлажден до соответствующего числа Фибоначчи <math>F_n</math>. Это приближение справедливо до тех пор, пока наибольший член, кратный <math>\epsilon</math>, все еще намного меньше 1. Затем Шульман предложил «алгоритм сопряжения партнеров» (PPA) и доказал оптимальность PPA среди всех ''классических и квантовых'' алгоритмов. Эти два алгоритма, Фибоначчи-охлаждение и PPA, стали основной для двух совместных работ [11, 12], где также были получены верхние и нижние границы для алгоритмического охлаждения. Алгоритм сопряжения партнеров. определяется следующим образом. Повторяйте эти два шага, пока охлаждение не будет достаточно близким к пределу: (а) RESET – применяется к сбрасывающему спину в системе, содержащей n - 1 вычислительных спинов и один (представляющий наименьший значащий бит) сбрасывающий. (b) SORT – перестановка, сортирующая <math>2^n</math> диагональных элементов матрицы плотности по убыванию, так что спин с наибольшим значащим битом становится самым холодным. В работе [12] доказаны две важные теоремы: | ||
'''Теорема 1 (нижняя граница)'''. Когда <math>\epsilon^2 \gg 1</math> (а именно, для достаточно длинных молекул), теорема 3 из [12] гарантирует, что может быть извлечено <math>n - log(1/ \epsilon)</math> холодных кубитов. Этот случай актуален для масштабируемых квантовых вычислений на базе ЯМР. | |||
Впоследствии Элиас, Фернандес, Мор и Вайнштейн [6] более тщательно проанализировали случай n < 15 (при комнатной температуре), когда самый холодный спин (на всех стадиях) все еще имеет поляризационное смещение намного меньше 1. Этот случай наиболее актуален для применения в ЯМР-спектроскопии. Они обобщили принцип Фибоначчи-охлаждения на алгоритмы, дающие | '''Теорема 2 (верхняя граница)'''. В разделе 4.2 работы [12] доказывается следующая теорема: Ни один алгоритмический метод охлаждения не может увеличить вероятность любого базисного состояния выше <math>min \{ 2^{-n} e^{2^n \epsilon}, 1 \}</math>, если начальная конфигурация представляет собой полностью смешанное состояние (то же самое верно, если начальное состояние представляет собой тепловое состояние). | ||
Впоследствии Элиас, Фернандес, Мор и Вайнштейн [6] более тщательно проанализировали случай n < 15 (при комнатной температуре), когда самый холодный спин (на всех стадиях) все еще имеет поляризационное смещение намного меньше 1. Этот случай наиболее актуален для применения в ЯМР-спектроскопии. Они обобщили принцип Фибоначчи-охлаждения на алгоритмы, дающие ряды Фибоначчи более высокого порядка, такие как трибоначчи (также известный как 3-кратный ряд Фибоначчи), {... 81, 44, 24, 13, 7, 4, 2, 1, 1} и т. д. Конечный предел этих многочленных рядов Фибоначчи имеет место, когда каждый член ряда равен сумме всех предыдущих. Полученный ряд в точности является экспоненциальным {... 128, 64, 32,16, 8, 4, 2, 1, 1}, так что самый холодный спин охлаждается в <math>2^{n - 2}</math> раз. Более того, анализ высшего порядка вышеупомянутого верхнего предела (раздел 4.2 в [12]), показывает, что ни один спин не может быть охлажден больше, чем в <math>2^{n - 1}</math> раз; см. следствие 1 в [6]. | |||
== Применение == | == Применение == | ||
Два основных применения для | Два основных направления применения для отдаленного и близкого будущего уже упомянуты в разделе «Постановка задачи». Здесь важно добавить, что хотя конкретные алгоритмы, проанализированные до сих пор, обычно являются классическими, практическая реализация алгоритмического охлаждения на ЯМР-спектрометре должна быть осуществлена путем анализа универсальных квантовых вычислений с использованием определенных вентилей, допустимых в таких системах. Таким образом, алгоритмическое охлаждение может стать первым ближайшим механизмом применения квантовых вычислительных устройств. | ||
Строка 116: | Строка 120: | ||
== Открытые вопросы == | == Открытые вопросы == | ||
Основная открытая проблема практического применения алгоритмического охлаждения лежит в технологической области: можно ли увеличить соотношение времен релаксации, | Основная открытая проблема практического применения алгоритмического охлаждения лежит в технологической области: можно ли увеличить соотношение времен релаксации таким образом, чтобы можно было применять много ступеней охлаждения для соответствующих ЯМР-систем? Другие методы, например механизм спиновой диффузии [1], также могут быть полезны для различных сфер применения. | ||
Строка 123: | Строка 127: | ||
== Экспериментальные результаты == | == Экспериментальные результаты == | ||
Различные идеи алгоритмического охлаждения уже привели к нескольким экспериментам с использованием 3-4-кубитных квантовых вычислительных устройств: 1. Эксперимент [4], в котором был реализован один проход обратимого поляризационного сжатия. 2. Эксперимент [ ], в котором были обойдены границы сохранения энтропии (действующие в любой замкнутой системе). 3. Полномасштабный эксперимент с алгоритмическим охлаждением [1], в котором три ядра углерода инициализируются смещением спина водорода, а затем выполняется один шаг сжатия этих трех ядер углерода. | Различные идеи алгоритмического охлаждения уже привели к нескольким экспериментам с использованием 3-4-кубитных квантовых вычислительных устройств: | ||
1. Эксперимент [4], в котором был реализован один проход обратимого поляризационного сжатия. | |||
2. Эксперимент [3], в котором были обойдены границы сохранения энтропии (действующие в любой замкнутой системе). | |||
3. Полномасштабный эксперимент с алгоритмическим охлаждением [1], в котором три ядра углерода инициализируются смещением спина водорода, а затем выполняется один шаг сжатия этих трех ядер углерода. | |||
== См. также == | == См. также == | ||
Строка 160: | Строка 170: | ||
14. Sarensen, O.W.: Polarization transfer experiments in high-resolution NMR spectroscopy. Prog. Nuc. Mag. Res. Spect. 21, 503-569(1989) | 14. Sarensen, O.W.: Polarization transfer experiments in high-resolution NMR spectroscopy. Prog. Nuc. Mag. Res. Spect. 21, 503-569(1989) | ||
[[Категория: Совместное определение связанных терминов]] |