1294
правки
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
(не показаны 3 промежуточные версии 1 участника) | |||
Строка 66: | Строка 66: | ||
Для метрики расстояния Левенштейна Арбелл, Ландау и Митчелл [2] и | Для метрики расстояния Левенштейна Арбелл, Ландау и Митчелл [2] и Мякинен, Наварро и Укконен [10] независимо друг от друга представили алгоритмы с временем выполнения O(nm' + n'm). Эти алгоритмы являются расширениями алгоритма Бунке и Цирика. | ||
'''Теорема 2 (Арбелл, Ландау и Митчелл [2]; | '''Теорема 2 (Арбелл, Ландау и Митчелл, 2002 [2]; Мякинен, Наварро и Укконен [10]). Расстояние Левенштейна между строками A' и B', закодированными длинами серий, может быть вычислено за время O(nm' + n'm).''' | ||
Для метрики взвешенного расстояния редактирования Крочмор, Ландау и Зив-Укельсон [6] и | Для метрики взвешенного расстояния редактирования Крочмор, Ландау и Зив-Укельсон [6] и Мякинен, Наварро и Укконен [11] предложили алгоритмы с временем выполнения O(nm' + n'm), используя совершенно отличные друг от друга методы. Алгоритм Крочмора, Ландау и Зив-Укельсона [6] основывается на технике, которая используется в алгоритме сравнения с шаблоном для текста с LZ-сжатием [6], тогда как алгоритм Мякинена, Наварро и Укконена [11] является расширением алгоритма для метрики расстояния Левенштейна. | ||
'''Теорема 3 (Крочмор, Ландау и Зив-Укельсон 2003 [6]; | '''Теорема 3 (Крочмор, Ландау и Зив-Укельсон, 2003 [6]; Мякинен, Наварро и Укконен [11]). Взвешенное расстояние редактирования между строками A' и B', закодированными длинами серий, может быть вычислено за время O(nm' + n'm).''' | ||
Для метрики аффинного штрафа за гэп Ким, Амир, Ландау и Парк [8] предложили алгоритм с временем выполнения O(nm' + n'm). Для эффективного вычисления сходства в этой метрике задача преобразуется в задачу поиска пути в ориентированном ациклическом графе, и используются некоторые свойства максимальных путей в этом графе. Нет необходимости строить граф в явном виде, так как авторы предложили новые рекуррентности, использующие свойства графа. | Для метрики аффинного штрафа за гэп Ким, Амир, Ландау и Парк [8] предложили алгоритм с временем выполнения O(nm' + n'm). Для эффективного вычисления сходства в этой метрике задача преобразуется в задачу поиска пути в ориентированном ациклическом графе, и при ее решении используются некоторые свойства максимальных путей в этом графе. Нет необходимости строить граф в явном виде, так как авторы предложили новые рекуррентности, использующие свойства графа. | ||
Строка 90: | Строка 90: | ||
'''Теорема 5 (Апостолико, Ландау и Скиена, 1999 [ ]). Самая длинная общая подпоследовательность строк A' и B', закодированных длинами серий, может быть вычислена за время O(n' m' log(n' + m')).''' | '''Теорема 5 (Апостолико, Ландау и Скиена, 1999 [1]). Самая длинная общая подпоследовательность строк A' и B', закодированных длинами серий, может быть вычислена за время O(n' m' log(n' + m')).''' | ||
Строка 99: | Строка 99: | ||
Мякинен, Наварро и Укконен [11] пришли к выводу, что среднее время работы алгоритма составляет O(n'm') в предположении, что распределение длин серий одинаково в обеих строках. | |||
'''Гипотеза 1 ( | '''Гипотеза 1 (Мякинен, Наварро и Укконен, 2003 [11]). Самая длинная подпоследовательность строк A' и B', закодированных длинами серий, в среднем может быть вычислена за время O(n'm').''' | ||
Строка 108: | Строка 108: | ||
'''Теорема 7 (Крочмор, Ландау и Зив-Укельсон, 1993 [6]). Сходство между LZ-сжатыми строками X' и Y' в метрике аддитивного штрафа за гэп может быть вычислено за время O( | '''Теорема 7 (Крочмор, Ландау и Зив-Укельсон, 1993 [6]). Сходство между LZ-сжатыми строками X' и Y' в метрике аддитивного штрафа за гэп может быть вычислено за время <math>O(h n^2 / log \; n)</math>, где <math>h \le 1</math> – энтропия строк X и Y.''' | ||
== Применение == | == Применение == | ||
Строка 114: | Строка 114: | ||
== Открытые вопросы == | == Открытые вопросы == | ||
Сложность задачи в наихудшем случае не вполне понятна. Для метрики самой длинной общей подпоследовательности найдены некоторые результаты с временной сложностью | Сложность задачи в наихудшем случае не вполне понятна. Для метрики самой длинной общей подпоследовательности найдены некоторые результаты с временной сложностью оптимальнее O(nm' + n'm) при вычислении сходства двух строк, закодированных при помощи длин серий [1, 11, 12]. Остается открытым вопрос о распространении этих результатов на метрику расстояния Левенштейна, метрику взвешенного расстояния редактирования и метрику аффинного штрафа за гэп. | ||
Строка 137: | Строка 137: | ||
6. Crochemore, M., Landau, G.M.,Ziv-Ukelson, M.: A Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Matrices. SIAM J. Comput. 32(6), 1654-1673 (2003) | 6. Crochemore, M., Landau, G.M.,Ziv-Ukelson, M.: A Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Matrices. SIAM J. Comput. 32(6), 1654-1673 (2003) | ||
7. Fredriksson, K., Navarro, G., Ukkonen, E.: Sequential and Indexed Two-Dimensional Combinatorial Template Matching Allowing Rotations. Theor. Comput. Sci. 347(1-2), 239-275 | 7. Fredriksson, K., Navarro, G., Ukkonen, E.: Sequential and Indexed Two-Dimensional Combinatorial Template Matching Allowing Rotations. Theor. Comput. Sci. 347(1-2), 239-275(2005) | ||
(2005) | |||
[[Категория: Совместное определение связанных терминов]] | |||
8. Kim, J.W., Amir, A., Landau, G.M., Park, K.: Computing Similarity of Run-Length Encoded Strings with Affine Gap Penalty. In: Proc. 12th Symposium on String Processing and Information Retrieval (SPIRE'05). LNCS, vol. 3772, pp. 440-449 (2005) | 8. Kim, J.W., Amir, A., Landau, G.M., Park, K.: Computing Similarity of Run-Length Encoded Strings with Affine Gap Penalty. In: Proc. 12th Symposium on String Processing and Information Retrieval (SPIRE'05). LNCS, vol. 3772, pp. 440-449 (2005) |