1313
правок
Irina (обсуждение | вклад) м (→Применение) |
KVN (обсуждение | вклад) |
||
| (не показаны 2 промежуточные версии 1 участника) | |||
| Строка 43: | Строка 43: | ||
== Применение == | == Применение == | ||
Изначальная цель заключалась в разработке эффективных алгоритмов для нахождения простых путей и циклов в графах. Однако впоследствии оказалось, что потенциальная область применения метода цветового кодирования значительно шире. Линейные временные границы (т. е. <math>2^{O(k)} \cdot |E|</math> для ориентированных графов и <math>2^{O(k)} \cdot |V|</math> - для неориентированных) для простых путей фактически применимы к любому ''лесу'' с ''k'' вершинами. Граница <math>2^{O(k)} \cdot |V|^{\omega}</math> для простых циклов фактически применима к любому ''серийно-параллельному'' графу с k вершинами. В общем случае, если граф G = (V, E) сдержит подграф, изоморфный графу <math>H = (V_H, E_H)</math>, ''древесная ширина'' которого не превышает t, то такой подграф можно найти за ожидаемое время <math>2^{O(k)} \cdot |V|^{t + 1}</math>, где <math>k = |V_H|</math>. Это улучшает результаты алгоритма Плена и Войта [14], время выполнения которого составляет <math>k^{O(k)} \cdot |V|^{t + 1}</math>. В качестве специального случая можно сделать вывод, что задача LOG PATH входит в P. Таким образом, на гипотезу Пападимитриу и Яннакакиса [13] можно дать положительный ответ. От экспоненциальной зависимости от k в вышеприведенных границах, вероятно, избавиться не получится, поскольку задача является NP-полной при наличии k во входных данных. | Изначальная цель заключалась в разработке эффективных алгоритмов для нахождения простых путей и циклов в графах. Однако впоследствии оказалось, что потенциальная область применения метода цветового кодирования значительно шире. Линейные временные границы (т. е. <math>2^{O(k)} \cdot |E|</math> для ориентированных графов и <math>2^{O(k)} \cdot |V|</math> - для неориентированных) для простых путей фактически применимы к любому ''лесу'' с ''k'' вершинами. Граница <math>2^{O(k)} \cdot |V|^{\omega}</math> для простых циклов фактически применима к любому ''серийно-параллельному'' графу с ''k'' вершинами. В общем случае, если граф G = (V, E) сдержит подграф, изоморфный графу <math>H = (V_H, E_H)</math>, ''древесная ширина'' которого не превышает t, то такой подграф можно найти за ожидаемое время <math>2^{O(k)} \cdot |V|^{t + 1}</math>, где <math>k = |V_H|</math>. Это улучшает результаты алгоритма Плена и Войта [14], время выполнения которого составляет <math>k^{O(k)} \cdot |V|^{t + 1}</math>. В качестве специального случая можно сделать вывод, что задача LOG PATH входит в P. Таким образом, на гипотезу Пападимитриу и Яннакакиса [13] можно дать положительный ответ. От экспоненциальной зависимости от ''k'' в вышеприведенных границах, вероятно, избавиться не получится, поскольку задача является NP-полной при наличии ''k'' во входных данных. | ||
| Строка 61: | Строка 61: | ||
== См. также == | == См. также == | ||
* [[ | * [[Аппроксимационные схемы для задач с планарными графами]] | ||
* [[Изоморфизм графов]] | * [[Изоморфизм графов]] | ||
* [[Древесная ширина графа]] | * [[Древесная ширина графа]] | ||
| Строка 103: | Строка 103: | ||
19. Shlomi,T., Segal, D., Ruppin, E., Sharan, R.:QPath: a method for querying pathways in a protein-protein interaction network. ВМС Bioinform. 7,199 (2006) | 19. Shlomi,T., Segal, D., Ruppin, E., Sharan, R.:QPath: a method for querying pathways in a protein-protein interaction network. ВМС Bioinform. 7,199 (2006) | ||
[[Категория: Совместное определение связанных терминов]] | |||