Аноним

Локальные аппроксимации задач об упаковке и покрытии: различия между версиями

Материал из WEGA
 
(не показаны 4 промежуточные версии 1 участника)
Строка 37: Строка 37:
'''Графы с ограниченной независимостью'''
'''Графы с ограниченной независимостью'''


В работах [3, 4, 5] изучаются алгоритмы локальной аппроксимации для задач о покрытии и упаковке для графов, встречающихся в контексте беспроводных децентрализованных сетей и сетей датчиков. Из-за их масштаба, динамичности и ограниченности ресурсов такие сети представляют собой особенно интересную область для применения локальных распределенных алгоритмов.
В работах [3, 4, 5] изучаются локальные аппроксимационные алгоритмы для задач о покрытии и упаковке для графов, встречающихся в контексте беспроводных децентрализованных сетей и сетей датчиков. Из-за их масштаба, динамичности и ограниченности ресурсов такие сети представляют собой особенно интересную область для применения локальных распределенных алгоритмов.




Строка 57: Строка 57:




Теоремы 1 и 2 дают ограничения только на качество распределенных решений задач линейного программирования о покрытии и упаковке. Однако многие практически важные проблемы являются целочисленными версиями таких задач. В сочетании с простыми рандомизированными схемами округления в работах [6, 7] были доказаны следующие верхние границы для поиска доминирующего множества, вершинного покрытия и паросочетания:
Теоремы 1 и 2 задают границы только для качества распределенных решений задач линейного программирования о покрытии и упаковке. Однако многие практически важные проблемы являются целочисленными версиями таких задач. В сочетании с простыми рандомизированными схемами округления в работах [6, 7] были доказаны следующие верхние границы для поиска доминирующего множества, вершинного покрытия и паросочетания:




Строка 66: Строка 66:




'''Теорема 4. За k раундов невозможно аппроксимировать задачу о минимальном вершинном покрытии лучше, чем коэффициентами <math>\Omega(\Delta^{1/k} / 1)</math> и <math>\Omega(n^{\Omega(1 / k^2)} / k)</math>. Это подразумевает нижние временные границы <math>\Omega(log \; \Delta / log \; log \; \Delta)</math> и <math>\Omega(\sqrt{log \; n / log \; log \; n})</math> для константных или даже полилогарифмических коэффициентов аппроксимации. Те же границы справедливы для задач о минимальном доминирующем множестве и о максимальном паросочетании, а также для лежащих в их основе LP.'''
'''Теорема 4. За k раундов невозможно аппроксимировать задачу о минимальном вершинном покрытии лучше, чем коэффициентами <math>\Omega(\Delta^{1/k} / k)</math> и <math>\Omega(n^{\Omega(1 / k^2)} / k)</math>. Это подразумевает нижние временные границы <math>\Omega(log \; \Delta / log \; log \; \Delta)</math> и <math>\Omega(\sqrt{log \; n / log \; log \; n})</math> для константных или даже полилогарифмических коэффициентов аппроксимации. Те же границы справедливы для задач о минимальном доминирующем множестве и о максимальном паросочетании, а также для лежащих в их основе линейных программ.'''




Строка 77: Строка 77:




В то время как алгоритмы, лежащие в основе результатов теорем 1 и 2 для решения задач LP о покрытии и упаковке, детерминированы или легко поддаются дерандомизации, все известные эффективные алгоритмы для решения задач нахождения минимального доминирующего множества и более сложных целочисленных задач о покрытии и упаковке являются рандомизированными. Вопрос о том, существуют ли хорошие детерминированные локальные алгоритмы для нахождения доминирующего множества и смежных задач, давно остается открытым. В [3] было показано, что для сетей, являющихся BIG, существуют эффективные детерминированные распределенные алгоритмы:
В то время как алгоритмы, лежащие в основе результатов теорем 1 и 2 для решения задач линейного программирования о покрытии и упаковке, детерминированы или легко поддаются дерандомизации, все известные эффективные алгоритмы для решения задач нахождения минимального доминирующего множества и более сложных целочисленных задач о покрытии и упаковке являются рандомизированными. Вопрос о том, существуют ли хорошие детерминированные локальные алгоритмы для нахождения доминирующего множества и смежных задач, давно остается открытым. В [3] было показано, что для сетей, являющихся BIG, существуют эффективные детерминированные распределенные алгоритмы:




'''Теорема 6. На сети BIG можно найти константные аппроксимации для вычисления минимального доминирующего множества, минимального вершинного покрытия, максимального паросочетания, а также для линейных программ (P) и (D) общего вида детерминированным образом за <math>O(log \; \Delta \cdot log^* n)</math> раундов.'''
'''Теорема 6. На сети BIG можно найти константные аппроксимации для вычисления минимального доминирующего множества, минимального вершинного покрытия, максимального паросочетания, а также для линейных программ (P) и (D) детерминированным образом за <math>O(log \; \Delta \cdot log^* n)</math> раундов.'''




Строка 86: Строка 86:
   
   


'''Теорема 7. На полиномиально ограниченной BIG существует локальная схема аппроксимации, которая вычисляет (<math>1 + \varepsilon</math>)-аппроксимацию для поиска минимального доминирующего множества за время <math>O(log \; \Delta \; log^* (n) / \varepsilon + 1 / \varepsilon^{O(1)})</math>. Если сетевой граф является UBG с константной размерностью удвоения и если все узлы знают расстояния до своих соседей, то (<math>1 + \varepsilon</math>)-аппроксимация может быть вычислена за <math>O(log^* (n) / \varepsilon + 1 / \varepsilon^{O(1)})</math> раундов.'''
'''Теорема 7. На полиномиально ограниченной BIG существует локальная аппроксимационная схема, которая вычисляет (<math>1 + \varepsilon</math>)-аппроксимацию для поиска минимального доминирующего множества за время <math>O(log \; \Delta \; log^* (n) / \varepsilon + 1 / \varepsilon^{O(1)})</math>. Если сетевой граф является UBG с константной размерностью удвоения и если все узлы знают расстояния до своих соседей, то (<math>1 + \varepsilon</math>)-аппроксимация может быть вычислена за <math>O(log^* (n) / \varepsilon + 1 / \varepsilon^{O(1)})</math> раундов.'''


== Применение ==
== Применение ==
Строка 95: Строка 95:


== Открытые вопросы ==
== Открытые вопросы ==
Существует ряд открытых вопросов, связанных с распределенной аппроксимацией задач о покрытии и упаковке в частности и с алгоритмами распределенной аппроксимации – в целом. Наиболее очевидной нерешенной задачей, безусловно, является устранение разрывов между верхними границами теорем 1, 2 и 3 и нижними границами теоремы 4. Также было бы любопытно посмотреть, насколько хорошо другие задачи оптимизации поддаются аппроксимации распределенным образом. В частности, распределенная сложность более общих классов линейных программ остается полностью открытым вопросом. Очень интригующей проблемой является определение необходимости рандомизации для получения эффективных по времени распределенных алгоритмов. В настоящее время лучшие детерминированные алгоритмы для нахождения доминирующего множества разумного размера и для многих других задач занимают время <math>2^{O(\sqrt{log \; n})}</math>, тогда как временная сложность лучших рандомизированных алгоритмов обычно является не более чем полилогарифмической от количества узлов.
Существует ряд открытых вопросов, связанных с распределенной аппроксимацией задач о покрытии и упаковке в частности и с распределенными аппроксимационными алгоритмами – в целом. Наиболее очевидной нерешенной задачей, безусловно, является устранение разрывов между верхними границами теорем 1, 2 и 3 и нижними границами теоремы 4. Также было бы любопытно посмотреть, насколько хорошо другие задачи оптимизации поддаются аппроксимации распределенным образом. В частности, распределенная сложность более общих классов линейных программ остается полностью открытым вопросом. Очень интригующей проблемой является определение необходимости рандомизации для получения эффективных по времени распределенных алгоритмов. В настоящее время лучшие детерминированные алгоритмы для нахождения доминирующего множества разумного размера и для многих других задач занимают время <math>2^{O(\sqrt{log \; n})}</math>, тогда как временная сложность лучших рандомизированных алгоритмов обычно является не более чем полилогарифмической от количества узлов.


== См. также ==
== См. также ==
Строка 124: Строка 124:


11. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
11. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
[[Категория: Совместное определение связанных терминов]]