1294
правки
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
(не показано 16 промежуточных версий 1 участника) | |||
Строка 6: | Строка 6: | ||
Захватывающий прорыв, достигнутый Даскалакисом, Голдбергом и Пападимитриу [4] для игр с четырьмя или более игроками, свидетельствует о том, что вычисление равновесия Нэша, вероятно, является трудным. Было доказано, что задача является | Захватывающий прорыв, достигнутый Даскалакисом, Голдбергом и Пападимитриу [4] для игр с четырьмя или более игроками, свидетельствует о том, что вычисление равновесия Нэша, вероятно, является трудным. Было доказано, что задача является <math>\mathcal PPAD</math>-полной (аргументы полиномиальной четности на ориентированных графах – polynomial parity argument, directed version) – этот класс сложности был введен Пападимитриу в работе [9]. Результаты в [4] основываются на технике, разработанной в [6]. Затем эта оценка сложности была улучшена для случая трех игроков Ченом и Денгом [1], а также Даскалакисом и Пападимитриу [5] – независимо друг от друга и с использованием разных доказательств. Наконец, Чен и Денг [2] доказали, что NASH – задача нахождения равновесия Нэша в биматричной игре (или игре для двух игроков) – является <math>\mathcal PPAD</math>-полной. | ||
Биматричной игрой называется некооперативная игра между двумя игроками, в которой игроки имеют m и n вариантов действий (или чистых стратегий), соответственно. Такая игра может быть задана двумя матрицами размера <math>m \times n</math>, <math>A = (a_{i, j})</math> и <math>B = (b_{i, j})</math>. Если первый игрок выбирает действие i, а второй игрок – действие j, то их | Биматричной игрой называется некооперативная игра между двумя игроками, в которой игроки имеют m и n вариантов действий (или чистых стратегий), соответственно. Такая игра может быть задана двумя матрицами размера <math>m \times n</math>, <math>\mathbf{A} = \big( a_{i, j} \big)</math> и <math>\mathbf{B} = \big( b_{i, j} \big)</math>. Если первый игрок выбирает действие i, а второй игрок – действие j, то их выигрыш составляет <math>a_{i, j}</math> и <math>b_{i, j}</math>, соответственно. Смешанная стратегия игрока представляет собой распределение вероятностей над его выборами. Обозначим за <math>\mathbb{P}^n</math> множество всех векторов вероятностей в <math>\mathbb{R}^n</math>, то есть неотрицательных векторов, сумма элементов которых равна 1. Теорема Нэша о равновесии в некооперативных играх в приложении к биматричным играм гласит, что для каждой биматричной игры <math>\mathcal{G} = (\mathbf{A}, \mathbf{B})</math> существует пара смешанных стратегий <math>(\mathbf{x}^* \in \mathbb{P}^m, \mathbf{y}^* \in \mathbb{P}^n)</math>, называемая равновесием Нэша, такая, что для всех <math>\mathbf{x}^* \in \mathbb{P}^m</math> и <math>\mathbf{y}^* \in \mathbb{P}^n</math> выполняются соотношения <math>(\mathbf{x}^*)^T \mathbf{A} \mathbf{y}^* \ge \mathbf{x}^T \mathbf{A} \mathbf{y}^*</math> и <math>(\mathbf{x}^*)^T \mathbf{B} \mathbf{y}^* \ge (\mathbf{x}^*)^T \mathbf{B} \mathbf{y}^*</math>. | ||
С вычислительной точки зрения можно остановиться на приближенном равновесии Нэша. Обозначим за | С вычислительной точки зрения можно остановиться на приближенном равновесии Нэша. Обозначим за <math>\mathbf{A}_i</math> вектор i-й строки матрицы <math>\mathbf{A}</math>, а за <math>\mathbf{B}_i</math> – вектор i-го столбца матрицы <math>\mathbf{B}</math>. <math>\epsilon</math>-поддерживаемое равновесие Нэша для игры <math>(\mathbf{A}, \mathbf{B})</math> представляет собой пару смешанных стратегий <math>(\mathbf{x}^*, \mathbf{y}^*)</math>, такую, что: | ||
<math>\mathbf{A}_i \mathbf{y}^* > \mathbf{A}_j \mathbf{y}^* + \epsilon \implies x_j^* = 0, \forall i, j : 1 \le i, j \le m</math>; | |||
Определение 1 (2-NASH и NASH). | <math>(\mathbf{x}^*)^T \mathbf{B}_i > (\mathbf{x}^*)^T \mathbf{B}_j + \epsilon \implies y_j^* = 0, \forall i, j : 1 \le i, j \le n</math>. | ||
'''Определение 1 (2-NASH и NASH)'''. Входом задачи 2-NASH является пара <math>(\mathcal{G}, 0^k)</math>, где <math>\mathcal{G}</math> – биматричная игра, а выходом – <math>2^{-k}</math>-поддерживаемое равновесие Нэша для игры <math>\mathcal{G}</math>. Входом задачи NASH является биматричная игра <math>\mathcal{G}</math>, выходом – точное равновесие Нэша для <math>\mathcal{G}</math>. | |||
== Основные результаты == | == Основные результаты == | ||
Бинарное отношение R | Бинарное отношение <math>R \subset \{ 0, 1 \}^* \times \{0, 1 \}^*</math> является ''полиномиально сбалансированным'', если существует полином ''p'', такой, что для всех пар <math>(x, y) \in R</math> верно <math>|y| \le p(|x|)</math>. Это отношение ''вычислимо за полиномиальное время'', если для каждой пары (x,y) можно решить, имеет ли место <math>(x, y) \in R</math>, за время, полиномиальное относительно |x| + |y|. <math>\mathcal NP</math>-[[Классы P и NP|полная]] задача поиска <math>Q_R</math>, задаваемая R, определяется следующим образом: | ||
Пусть дано <math>x \in \{0, 1 \}^*</math>. Если существует y, такое, что <math>(x, y) \in R</math>, то алгоритм возвращает y, в противном случае он возвращает специальную строку «нет». | |||
Отношение R является полным, если для каждого x | Отношение R является ''полным'', если для каждого <math>x \in \{0, 1 \}^*</math> существует y, такое, что <math>(x, y) \in R</math>. Следуя [7], обозначим за <math>\mathcal TFNP</math> класс всех <math>\mathcal NP</math>-полных задач поиска, заданных полными отношениями. Задача поиска <math>Q_{R_1} \in \mathcal{TFNP}</math> ''[[Полиномиальная_сводимость_(трансформируемость)|полиномиально сводима]]'' к задаче <math>Q_{R_2} \in \mathcal{TFNP}</math>, если существует пара полиномиально вычислимых функций (f, g), таких, что для каждого x из <math>R_1</math> в случае, если y удовлетворяет условию <math>(f(x), y) \in R_2</math>, верно <math>(x, g(y)) \in R_1</math>. Более того, <math>Q_{R_1}</math> и <math>Q_{R_2}</math> полиномиально эквивалентны, если <math>Q_{R_2}</math> также сводима к <math>Q_{R_1}</math>. | ||
Класс сложности PPAD является подклассом TFNP, содержащим все задачи поиска, которые полиномиально сводимы к: | Класс сложности <math>\mathcal PPAD</math> является подклассом <math>\mathcal TFNP</math>, содержащим все задачи поиска, которые полиномиально сводимы к: | ||
Определение 2 (задача LEAFD). Входными данными задачи LEAFD является пара (M | '''Определение 2 (задача LEAFD)'''. Входными данными задачи LEAFD является пара <math>(M, O^n)</math>, где M определяет машину Тьюринга с полиномиальным временем работы, удовлетворяющую следующим условиям: | ||
1. для каждого <math>v \in \{ 0, 1 \}^n</math> M(v) является упорядоченной парой <math>(u_1, u_2)</math>, где <math>u_1, u_2 \in \{ 0, 1 \}^n \cup</math> {«нет»}; | |||
2. <math>M(O^n)</math> = («нет», <math>1^n</math>), и первая компонента <math>M(1^n)</math> равна <math>O^n</math>. | |||
Этот экземпляр определяет ориентированный граф G = (V, E) с <math>V = \{ 0, 1 \}^n</math>. Ребро (u, v) имеется в E в том и только том случае, если v – вторая компонента M(u), а u – первая компонента M(v). | |||
Результатом решения задачи LEAFD является ориентированный лист G, отличный от <math>0^n</math>. Здесь вершина называется ''ориентированным листом'', если сумма ее [[полустепень исхода вершины|полустепени исхода]] и [[полустепень захода вершины|полустепени захода]] равна единице. | |||
Теорема [2]. Задачи 2- | Задача поиска в <math>\mathcal PPAD</math> называется ''полной'' в <math>\mathcal PPAD</math> (или <math>\mathcal PPAD</math>-полной), если существует редукция от LEAFD до нее за полиномиальное время. | ||
'''Теорема [2]. Задачи 2-NASH и NASH являются <math>\mathcal PPAD</math>-полными.''' | |||
== Применение == | == Применение == | ||
Концепция равновесия Нэша традиционно является одним из наиболее влиятельных инструментов в изучении многих дисциплин, связанных со стратегиями, таких как политология и экономическая теория. Распространение Интернета и изучение его анархической среды сделали равновесие Нэша неотъемлемой частью компьютерных наук. За последние десятилетия сообщество специалистов в области компьютерных наук внесло большой вклад в разработку эффективных алгоритмов для решения соответствующих задач. | Концепция равновесия Нэша традиционно является одним из наиболее влиятельных инструментов в изучении многих дисциплин, связанных со стратегиями, таких как политология и экономическая теория. Распространение Интернета и изучение его анархической среды сделали равновесие Нэша неотъемлемой частью компьютерных наук. За последние десятилетия сообщество специалистов в области компьютерных наук внесло большой вклад в разработку эффективных алгоритмов для решения соответствующих задач. Последовательность результатов работ [1, 2, 3, 4, 5, 6] впервые дает ''некоторые свидетельства'' того, что задача нахождения равновесия Нэша, вероятно, является P-сложной. Эти результаты очень важны для активно развивающейся дисциплины – алгоритмической теории игр. | ||
== Открытые вопросы == | == Открытые вопросы == | ||
Упомянутая последовательность работ показывает, что игры с (r + 1) игроками полиномиально сводимы к играм с r игроками для любого r > | Упомянутая последовательность работ показывает, что игры с (r + 1) игроками полиномиально сводимы к играм с r игроками для любого <math>r \ge 2</math>, но редукция осуществляется путем сведения игр с (r + 1) игроками сначала к задаче с фиксированной точкой, а затем к играм с r игроками. Существует ли естественная редукция, которая переходит непосредственно от игр с (r + 1) игроками к играм с r игроками? Подобная редукция могла бы обеспечить лучшее понимание поведения в многопользовательских играх. | ||
Многие считают, что класс <math>\mathcal PPAD</math> является трудным в <math>\mathcal P</math>, однако веских доказательств или интуитивных соображений в пользу этого мнения нет. Остается открытым естественный вопрос: можно ли строго доказать, что класс <math>\mathcal PPAD</math> является трудным, при одном из общепринятых в теоретической информатике предположений, таких как «<math>\mathcal NP</math> не находится в <math>\mathcal P</math>» или «существует вычислительно необратимая функция»? Такой результат был бы чрезвычайно важным как для теории вычислительной сложности, так и для алгоритмической теории игр. | |||
== См. также == | == См. также == | ||
Строка 76: | Строка 83: | ||
9. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comp. Syst. Sci. 48, 498-532(1994) | 9. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comp. Syst. Sci. 48, 498-532(1994) | ||
[[Категория: Совместное определение связанных терминов]] |