Технологическое отображение последовательной схемы: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
 
(не показано 7 промежуточных версий 1 участника)
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Одним из ключевых этапов процесса проектирования СБИС является технологическое отображение, которое преобразует булеву сеть технологически инвариантных логических вентилей и D-триггеров, тактируемых перепадом напряжения (FF) в эквивалентную сеть, состоящую из ячеек из библиотеки логических элементов целевой технологии [1, , 5]. Технологическое отображение может быть сформулировано как задача покрытия, в которой осуществляется покрытие логических вентилей элементами технологической библиотеки. Для простоты изложения предположим, что библиотека содержит только один элемент – таблицу поиска с K логическими входами (K-LUT) с единичной задержкой. Таблица K-LUT может реализовать любую булеву функцию с не более чем K входами, как в случае с высокоэффективными программируемыми пользователем вентильными матрицами (ППВМ, FPGA).  
Одним из ключевых этапов процесса проектирования СБИС является технологическое отображение, которое преобразует булеву сеть, состоящую из технологически инвариантных логических вентилей и D-триггеров, тактируемых перепадом напряжения (FF), в эквивалентную сеть, состоящую из ячеек из библиотеки логических элементов целевой технологии [1, 3, 5]. Технологическое отображение может быть сформулировано как задача покрытия, в которой осуществляется покрытие логических вентилей элементами технологической библиотеки. Для простоты изложения предположим, что библиотека содержит только один элемент – таблицу поиска с K логическими входами (K-LUT) с единичной задержкой. Таблица K-LUT может реализовать любую булеву функцию с не более чем K входами, как в случае с высокоэффективными программируемыми пользователем вентильными матрицами (ППВМ).  




Пример технологического отображения приведен на рис. 1. Для исходной сети на схеме (1) с тремя триггерами и четырьмя вентилями строится покрытие с тремя 3-входовыми конусами, как показано на рис. 1 (2). Соответствующее отображение с использованием таблиц 3-LUT показано на рис. 1 (3). Заметим, что вентиль i покрывается двумя конусами. У отображения на рис. 1 (3) ''продолжительность цикла'' (или ''период цикла'') составляет две единицы, что представляет собой совокупную задержку на самом длинном пути между триггерами (FF), от первичных входов (PI) до триггеров и от триггеров до первичных выходов (PO).
Пример технологического отображения приведен на рис. 1. Для исходной сети на схеме (1) с тремя триггерами и четырьмя вентилями строится покрытие тремя 3-входовыми конусами, как показано на рис. 1 (2). Соответствующее отображение с использованием таблиц 3-LUT показано на рис. 1 (3). Заметим, что вентиль i покрывается двумя конусами. У отображения на рис. 1 (3) ''продолжительность цикла'' (или ''период цикла'') составляет две единицы, что равняется совокупной задержке на самом длинном пути между триггерами (FF), от первичных входов (PI) до триггеров и от триггеров до первичных выходов (PO).




Строка 19: Строка 19:
[[Файл:SCTM_2.png]]
[[Файл:SCTM_2.png]]


Рисунок 2. Ресинхронизация и отображение: (1) ресинхронизация и отображение, (2) покрытие, (3) решение после ресинхронизации
Рисунок 2. Ресинхронизация и отображение: (1) ресинхронизация и покрытие, (2) отображение, (3) решение после ресинхронизации




Строка 28: Строка 28:




В [7] был представлен другой алгоритм, который использовал преимущество знания того факта, что на практике K является небольшим целым числом, обычно от 3 до 6. Алгоритм выполняет перечисление всех K-входовых конусов для каждого вентиля. Он может учитывать другие целевые показатели оптимизации (например, площадь и мощность) и может применяться к стандартным библиотекам логических элементов.
В работе [7] был представлен другой алгоритм, который использовал преимущество знания того факта, что на практике K является небольшим целым числом, обычно от 3 до 6. Алгоритм выполняет перечисление всех K-входовых конусов для каждого вентиля. Он может учитывать другие целевые показатели оптимизации (например, площадь и мощность) и может применяться к стандартным библиотекам логических элементов.




'''Перечисление разрезов'''
'''Перечисление разрезов'''


Булева сеть может быть представлена в виде ориентированного графа со взвешенными ребрами, вершинами которого являются логические вентили, первичные входы и первичные выходы. Существует ориентированное ребро (u, v) с весом d, если u, после прохода через d триггеров, воздействует на v.
Булева сеть может быть представлена в виде ориентированного графа со взвешенными ребрами, вершинами которого являются логические вентили, первичные входы и первичные выходы. В нем имеется ориентированное ребро (u, v) с весом d, если u, после прохода через d триггеров, воздействует на v.


Логический конус для вершины может быть представлен в виде разреза, состоящего из входов конуса. Элемент разреза для v состоит из задающей вершины u и суммарного веса d на путях из u в v, обозначаемого <math>u^d</math>. Если u достигает v по нескольким путям с разным числом вентилей, u будет входить в разрез несколько раз с разными значениями d. К примеру, для конуса для z на рис 2 (2) соответствующий разрез будет иметь вид <math>\{ z^1, a^1, b^1 \}</math>. Разрез размера K называется K-разрезом.
Логический конус для вершины может быть представлен в виде ''разреза'', состоящего из входов конуса. Элемент разреза для v состоит из задающей вершины u и суммарного веса d на путях из u в v, обозначаемого <math>u^d</math>. Если u достигает v по нескольким путям с разным числом триггеров, u будет входить в разрез несколько раз с разными значениями d. К примеру, для конуса для z на рис 2 (2) соответствующий разрез будет иметь вид <math>\{ z^1, a^1, b^1 \}</math>. Разрез размера K называется K-разрезом.




Строка 42: Строка 42:
<math>\{ \{ v^0 \} \} \cup \{ c^{d_1}_1 \cup ... \cup c^{d_t}_t | c_1 \in C(u_1), ..., c_t \in C(u_t), | c^{d_1}_1 \cup ... \cup c^{d_t}_t | \le K \}</math>,
<math>\{ \{ v^0 \} \} \cup \{ c^{d_1}_1 \cup ... \cup c^{d_t}_t | c_1 \in C(u_1), ..., c_t \in C(u_t), | c^{d_1}_1 \cup ... \cup c^{d_t}_t | \le K \}</math>,


где <math>c^{d_i}_i = \{ u^{d + d_i} | u^d \in c_i \}</math> для i = 1.. t. Очевидно, что <math>merge(C(u_1), ..., C(u_t))</math> является множеством K-разрезов для v.
где <math>c^{d_i}_i = \{ u^{d + d_i} | u^d \in c_i \}</math> для i = 1, ..., t. Очевидно, что <math>merge(C(u_1), ..., C(u_t))</math> является множеством K-разрезов для v.




Если в сети N не имеется циклов, K—разрезы для всех вершин можно определить при помощи операции слияния merge в топологическом порядке, начиная с первичных входов. Для сетей общего вида на рис. 3 представлена процедура итеративного вычисления разрезов, предложенная в работе [7].
Если в сети N не имеется циклов, K-разрезы для всех вершин можно определить при помощи операции слияния merge в топологическом порядке, начиная с первичных входов. Для сетей общего вида на рис. 3 представлена процедура итеративного вычисления разрезов, предложенная в работе [7].




Строка 92: Строка 92:




В работе [7] были предложены некоторые техники для ускорения работы процедуры. С их помощью все 4-разрезы для каждой из эталонных схем ISCAS89 могут быть найдены не более чем за пять итераций.
В работе [7] были предложены некоторые техники для ускорения выполнения процедуры. С их помощью все 4-разрезы для каждой из эталонных схем ISCAS89 могут быть найдены не более чем за пять итераций.




'''Этап разметки'''
'''Этап разметки'''


После получения всех K-разрезов алгоритм оценивает разрезы, основываясь на последовательном времени прихода (или l-значениях), представляющем собой расширение традиционного времени прихода, чтобы рассчитать эффект от ресинхронизации [6,8].
После получения всех K-разрезов алгоритм оценивает разрезы, основываясь на последовательном времени прихода (или l-значениях), представляющем собой расширение традиционного времени прихода, чтобы рассчитать эффект от ресинхронизации [6, 8].




Строка 108: Строка 108:
       '''return''' «Успешно»
       '''return''' «Успешно»


Рисунок 5. Технологическое отображение последовательной схемы. Процедура разметки
Рисунок 5. Процедура разметки




0 \{а°} :0 fb0g : 0 {Р} :0 {х0} : -1 {У0}: О {} :- 1 fo0g :-1
{| class="wikitable" style="text-align:center"
1 \ {а0} : 1 z1g:0 0 0   0
|-
< Q        Q z0g : 1 {о1 б1! :0 fz0g :0
! Итер. !! a !! b !! i !! x !! y !! z !! o
|-
! 0
| <math>\{ a^0 \}: 0</math> || <math>\{ b^0 \}: 0</math> || <math>\{ i^0 \}: 0</math> || <math>\{ x^0 \}: -1</math> || <math>\{ y^0 \}: 0</math> || <math>\{ z^0 \}: -1</math> || <math>\{ o^0 \}: -1</math>
|-
! 1
|  ||  || <math>\{ a^0 \}: 1</math>
|| <math>\{ a^1, z^1 \}: 0</math>
|| <math>\{ a^0, b^0, z^0 \}: 1</math>
|| <math>\{ a^1, z^1, b^1 \}: 0</math>
|| <math>\{ z^0 \}: 0</math>
|}


Рисунок 6. Технологическое отображение последовательной схемы. Пример разметки
Рисунок 6. Пример разметки




Процедура разметки стремится найти метку для каждой вершины, как схематически показано на рис. 5, где wv обозначает вес кратчайших пар из первичных входов к вершине v.
Процедура разметки стремится найти метку для каждой вершины, как схематически показано на рис. 5, где <math>w_v</math> обозначает вес кратчайших путей из первичных входов к вершине v.




На рис. 6 изображены итерации вычисления меток для схемы на рис. 1 (1) в предположении, что целевая продолжительность цикла ф = 1 и вершины оцениваются в порядке i, x, y, z, o. В таблице отражены как текущая метка, так и соответствующий разрез для каждой вершины. В данном примере после первой итерации ни одна из меток не меняется, и выполнение процедуры завершается.
На рис. 6 изображены итерации вычисления меток для схемы на рис. 1 (1) в предположении, что целевая продолжительность цикла <math>\phi = 1</math> и вершины оцениваются в порядке i, x, y, z, o. В таблице отражены как текущая метка, так и соответствующий разрез для каждой вершины. В данном примере после первой итерации ни одна из меток не меняется, и выполнение процедуры завершается.




Можно показать, что процедура разметки остановится после не более чем n(n - 1) итераций [ ]. Следующая лемма связывает метки и отображение:
Можно показать, что процедура разметки остановится после не более чем n(n - 1) итераций [9]. Следующая лемма связывает метки и отображение:




Лемма 2. N имеет отображение с продолжительностью цикла ' в том и только том случае, если процедура разметки возвращает значение «успех».
''Лемма 2. N имеет отображение с продолжительностью цикла <math>\varphi</math> в том и только том случае, если процедура разметки возвращает значение «Успешно».''




'''Этап отображения'''
'''Этап отображения'''


После того успешного вычисления меток для всех вершин можно построить отображение, начиная с первичных выходов. В каждой вершине v процедура выбирает разрез, реализующий метку вершины, а затем переходит к выбору разреза для u, если ud входит в состав разреза, выбранного для v. На ребре, идущем из таблицы LUT для u к LUT для v, добавляется d триггеров. Для схемы на рис. 1 (1) сгенерированное отображение, основанное на метках, найденных на рис. 6, представляет собой сеть на рис. 2 (2).
После успешного вычисления меток для всех вершин можно построить отображение, начиная с первичных выходов. В каждой вершине v процедура выбирает разрез, реализующий метку вершины, а затем переходит к выбору разреза для u, если <math>u^d</math> входит в состав разреза, выбранного для v. На ребре, идущем из таблицы LUT для u к LUT для v, добавляется d триггеров. Для схемы на рис. 1 (1) сгенерированное отображение, основанное на метках, найденных на рис. 6, представляет собой сеть на рис. 2 (2).




Для получения отображения с целевой продолжительностью цикла ' таблица LUT для v может быть ресинхронизирована на \l{v)l<p~\ 1. Для схемы на рис. 1 (1) окончательное отображение после ресинхронизации представлено на рис. 2 (3).
Для получения отображения с целевой продолжительностью цикла <math>\varphi</math> таблица LUT для v может быть ресинхронизирована на <math>\lceil l(v) / \phi \rceil - 1</math>. Для схемы на рис. 1 (1) окончательное отображение после ресинхронизации представлено на рис. 2 (3).


== Применение ==
== Применение ==
Строка 163: Строка 174:


9. Pan, P., Liu, C.L.: Optimal Clock Period FPGA Technology Mapping for Sequential Circuits. ACM Trans. on Des. Autom. of Electron. Syst., 3(3), 437-462 (1998)
9. Pan, P., Liu, C.L.: Optimal Clock Period FPGA Technology Mapping for Sequential Circuits. ACM Trans. on Des. Autom. of Electron. Syst., 3(3), 437-462 (1998)
[[Категория: Совместное определение связанных терминов]]

Текущая версия от 11:18, 7 декабря 2024

Ключевые слова и синонимы

Интегрированные ресинхронизация и технологическое отображение; технологическое отображение с ресинхронизацией

Постановка задачи

Одним из ключевых этапов процесса проектирования СБИС является технологическое отображение, которое преобразует булеву сеть, состоящую из технологически инвариантных логических вентилей и D-триггеров, тактируемых перепадом напряжения (FF), в эквивалентную сеть, состоящую из ячеек из библиотеки логических элементов целевой технологии [1, 3, 5]. Технологическое отображение может быть сформулировано как задача покрытия, в которой осуществляется покрытие логических вентилей элементами технологической библиотеки. Для простоты изложения предположим, что библиотека содержит только один элемент – таблицу поиска с K логическими входами (K-LUT) с единичной задержкой. Таблица K-LUT может реализовать любую булеву функцию с не более чем K входами, как в случае с высокоэффективными программируемыми пользователем вентильными матрицами (ППВМ).


Пример технологического отображения приведен на рис. 1. Для исходной сети на схеме (1) с тремя триггерами и четырьмя вентилями строится покрытие тремя 3-входовыми конусами, как показано на рис. 1 (2). Соответствующее отображение с использованием таблиц 3-LUT показано на рис. 1 (3). Заметим, что вентиль i покрывается двумя конусами. У отображения на рис. 1 (3) продолжительность цикла (или период цикла) составляет две единицы, что равняется совокупной задержке на самом длинном пути между триггерами (FF), от первичных входов (PI) до триггеров и от триггеров до первичных выходов (PO).


Ресинхронизация представляет собой преобразование, которое перемещает триггервы по схеме, сохраняя ее функциональность [4]. Она может повлиять на технологическое отображение. На рис. 2 (1) представлена схема, полученная из схемы на рис. 1 (1) в результате ресинхронизации триггеров на выходах y и i к их входам. Эта схема может быть покрыта всего одним 3-входовым конусом, как показано на рис. 2 (1). Соответствующее отображение, представленное на рис. 2 (2), как с точки зрения синхронизации, так и с точки зрения площади, лучше функционально эквивалентного первого решения на рис. 1 (3), полученного без ресинхронизации.


SCTM 1.png

Рисунок 1. Технологическое отображение: (1) исходная сеть, (2) покрытие, (3) отображение


SCTM 2.png

Рисунок 2. Ресинхронизация и отображение: (1) ресинхронизация и покрытие, (2) отображение, (3) решение после ресинхронизации


K-ограниченной сетью называется сеть, в которой каждый вентиль имеет не более K входов. Задачу технологического отображения последовательной схемы можно определить следующим образом. Пусть даны K-ограниченная булева сеть N и целевая продолжительность цикла [math]\displaystyle{ \varphi }[/math]. Найти отображение с продолжительностью цикла [math]\displaystyle{ \varphi }[/math], предполагая, что допускается перемещение триггеров при помощи ресинхронизации.

Основные результаты

Первый алгоритм с полиномиальным временем выполнения для этой задачи был предложен в работах [8, 9]. Улучшенный алгоритм в работе [2] обеспечивал сокращение времени выполнения. Оба этих алгоритма были основаны на вычислении потока с минимальной стоимостью.


В работе [7] был представлен другой алгоритм, который использовал преимущество знания того факта, что на практике K является небольшим целым числом, обычно от 3 до 6. Алгоритм выполняет перечисление всех K-входовых конусов для каждого вентиля. Он может учитывать другие целевые показатели оптимизации (например, площадь и мощность) и может применяться к стандартным библиотекам логических элементов.


Перечисление разрезов

Булева сеть может быть представлена в виде ориентированного графа со взвешенными ребрами, вершинами которого являются логические вентили, первичные входы и первичные выходы. В нем имеется ориентированное ребро (u, v) с весом d, если u, после прохода через d триггеров, воздействует на v.

Логический конус для вершины может быть представлен в виде разреза, состоящего из входов конуса. Элемент разреза для v состоит из задающей вершины u и суммарного веса d на путях из u в v, обозначаемого [math]\displaystyle{ u^d }[/math]. Если u достигает v по нескольким путям с разным числом триггеров, u будет входить в разрез несколько раз с разными значениями d. К примеру, для конуса для z на рис 2 (2) соответствующий разрез будет иметь вид [math]\displaystyle{ \{ z^1, a^1, b^1 \} }[/math]. Разрез размера K называется K-разрезом.


Пусть [math]\displaystyle{ (u_i, v) }[/math] – ребро в N с весом [math]\displaystyle{ d_i }[/math], а [math]\displaystyle{ C(u_i) }[/math] – множество K-разрезов для [math]\displaystyle{ d_i }[/math], i = 1, ..., t. Обозначим за [math]\displaystyle{ merge(C(u_1), ..., C(u_t)) }[/math] следующую операцию на множествах:

[math]\displaystyle{ \{ \{ v^0 \} \} \cup \{ c^{d_1}_1 \cup ... \cup c^{d_t}_t | c_1 \in C(u_1), ..., c_t \in C(u_t), | c^{d_1}_1 \cup ... \cup c^{d_t}_t | \le K \} }[/math],

где [math]\displaystyle{ c^{d_i}_i = \{ u^{d + d_i} | u^d \in c_i \} }[/math] для i = 1, ..., t. Очевидно, что [math]\displaystyle{ merge(C(u_1), ..., C(u_t)) }[/math] является множеством K-разрезов для v.


Если в сети N не имеется циклов, K-разрезы для всех вершин можно определить при помощи операции слияния merge в топологическом порядке, начиная с первичных входов. Для сетей общего вида на рис. 3 представлена процедура итеративного вычисления разрезов, предложенная в работе [7].


На рис. 4 изображены итерации перечисления 3-разрезов для схемы на рис. 1 (1) при слиянии разрезов в порядке i, x, y, z, o. В начале работы каждая вершина имеет собственный тривиальный разрез, включающий ее саму. В ряду 1 представлены новые разрезы, обнаруженные на первой итерации. На второй итерации обнаруживаются еще два новых разреза (для x). После этого выполнение процедуры останавливается, так как последующие слияния не приводят к выявлению новых разрезов.

  FindAllCuts(N, K)
  foreach вершины v в N do [math]\displaystyle{ C(v) \Leftarrow \{ \{ v^0 \} \} }[/math]
  while (находятся новые разрезы) do
     foreach вершины v в N do [math]\displaystyle{ C(v) \Leftarrow merge(C(u_1), ..., C(u_t)) }[/math]

Рисунок 3. Процедура перечисления разрезов


Итер. a b i x y z o
0 [math]\displaystyle{ \{ a^0 \} }[/math] [math]\displaystyle{ \{ b^0 \} }[/math] [math]\displaystyle{ \{ i^0 \} }[/math] [math]\displaystyle{ \{ x^0 \} }[/math] [math]\displaystyle{ \{ y^0 \} }[/math] [math]\displaystyle{ \{ z^0 \} }[/math] [math]\displaystyle{ \{ o^0 \} }[/math]
1 [math]\displaystyle{ \{ a^0 \} }[/math] [math]\displaystyle{ \{ i^1, z^1 \} }[/math]

[math]\displaystyle{ \{ a^1, z^1 \} }[/math]

[math]\displaystyle{ \{ i^0, b^0, z^0 \} }[/math]

[math]\displaystyle{ \{ a^0, b^0, z^0 \} }[/math]

[math]\displaystyle{ \{ x^0, y^1 \} }[/math]
[math]\displaystyle{ \{ i^1, z^1, b^1 \} }[/math] 
[math]\displaystyle{ \{ a^1, z^1, b^1 \} }[/math] 
[math]\displaystyle{ \{ i^1, z^1, y^1 \} }[/math] 
[math]\displaystyle{ \{ a^1, z^1, y^1 \} }[/math] 

[math]\displaystyle{ \{ z^0 \} }[/math]

2 [math]\displaystyle{ \{ i^1, x^1, y^2 \} }[/math]

[math]\displaystyle{ \{ a^1, x^1, y^2 \} }[/math]

Рисунок 4. Пример перечисления разрезов


Лемма 1. После не более чем Kn итераций процедура перечисления разрезов найдет K-разрезы для всех вершин в N.


В работе [7] были предложены некоторые техники для ускорения выполнения процедуры. С их помощью все 4-разрезы для каждой из эталонных схем ISCAS89 могут быть найдены не более чем за пять итераций.


Этап разметки

После получения всех K-разрезов алгоритм оценивает разрезы, основываясь на последовательном времени прихода (или l-значениях), представляющем собой расширение традиционного времени прихода, чтобы рассчитать эффект от ресинхронизации [6, 8].


  FindMinLabels(N)	
     foreach вершины v в N do [math]\displaystyle{ l(v) \Leftarrow -w_v \cdot \phi }[/math]
     while (имеются обновления меток) do	
        foreach вершины v в N do	
        [math]\displaystyle{ l(v) \Leftarrow min_{c \in C} \{ max \{ l(u) - d \cdot \phi + 1 | u^d \in c \} \}  }[/math]
        if v является первичным выходом и [math]\displaystyle{ l(v) \gt  \phi }[/math], return «Неуспешно»
     return «Успешно»

Рисунок 5. Процедура разметки


Итер. a b i x y z o
0 [math]\displaystyle{ \{ a^0 \}: 0 }[/math] [math]\displaystyle{ \{ b^0 \}: 0 }[/math] [math]\displaystyle{ \{ i^0 \}: 0 }[/math] [math]\displaystyle{ \{ x^0 \}: -1 }[/math] [math]\displaystyle{ \{ y^0 \}: 0 }[/math] [math]\displaystyle{ \{ z^0 \}: -1 }[/math] [math]\displaystyle{ \{ o^0 \}: -1 }[/math]
1 [math]\displaystyle{ \{ a^0 \}: 1 }[/math] [math]\displaystyle{ \{ a^1, z^1 \}: 0 }[/math] [math]\displaystyle{ \{ a^0, b^0, z^0 \}: 1 }[/math] [math]\displaystyle{ \{ a^1, z^1, b^1 \}: 0 }[/math] [math]\displaystyle{ \{ z^0 \}: 0 }[/math]

Рисунок 6. Пример разметки


Процедура разметки стремится найти метку для каждой вершины, как схематически показано на рис. 5, где [math]\displaystyle{ w_v }[/math] обозначает вес кратчайших путей из первичных входов к вершине v.


На рис. 6 изображены итерации вычисления меток для схемы на рис. 1 (1) в предположении, что целевая продолжительность цикла [math]\displaystyle{ \phi = 1 }[/math] и вершины оцениваются в порядке i, x, y, z, o. В таблице отражены как текущая метка, так и соответствующий разрез для каждой вершины. В данном примере после первой итерации ни одна из меток не меняется, и выполнение процедуры завершается.


Можно показать, что процедура разметки остановится после не более чем n(n - 1) итераций [9]. Следующая лемма связывает метки и отображение:


Лемма 2. N имеет отображение с продолжительностью цикла [math]\displaystyle{ \varphi }[/math] в том и только том случае, если процедура разметки возвращает значение «Успешно».


Этап отображения

После успешного вычисления меток для всех вершин можно построить отображение, начиная с первичных выходов. В каждой вершине v процедура выбирает разрез, реализующий метку вершины, а затем переходит к выбору разреза для u, если [math]\displaystyle{ u^d }[/math] входит в состав разреза, выбранного для v. На ребре, идущем из таблицы LUT для u к LUT для v, добавляется d триггеров. Для схемы на рис. 1 (1) сгенерированное отображение, основанное на метках, найденных на рис. 6, представляет собой сеть на рис. 2 (2).


Для получения отображения с целевой продолжительностью цикла [math]\displaystyle{ \varphi }[/math] таблица LUT для v может быть ресинхронизирована на [math]\displaystyle{ \lceil l(v) / \phi \rceil - 1 }[/math]. Для схемы на рис. 1 (1) окончательное отображение после ресинхронизации представлено на рис. 2 (3).

Применение

Данный алгоритм может применяться для отображения технологически независимой булевой сети на сеть, состоящую из ячеек из библиотеки логических элементов целевой технологии. Концепция и структура являются достаточно общими для того, чтобы их можно было адаптировать для изучения других оптимизаций схем, таких как кластеризация и реструктуризация последовательных схем.

См. также

Литература

1. Cong, J., Ding, Y.: FlowMap: An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs. IEEE Trans. on Comput. Aided Des. of Integr. Circuits and Syst., 13(1), 1-12(1994)

2. Cong, J., Wu, C.: FPGA Synthesis with Retiming and Pipelining for Clock Period Minimization of Sequential Circuits. ACM/IEEE Design Automation Conference (1997)

3. Keutzer, K.: DAGON: Technology Binding and Local Optimization by DAG Matching. ACM/IEEE Design Automation Conference (1987)

4. Leiserson, C.E., Saxe, J.B.: Retiming Synchronous Circuitry. Algorithmica6,5-35(1991)

5. Mishchenko, A., Chatterjee, S., Brayton, R., Ciesielski, M.: An integrated technology mapping environment. International Workshop on Logic Synthesis (2005)

6. Pan, P.: Continuous Retiming: Algorithms and Applications. IEEE International Conference on Computer Design, pp. 116-121. (1997)

7. Pan, P., Lin, C.C.: A New Retiming-based Technology Mapping Algorithm for LUT-based FPGAs. ACM International Symposium on Field-Programmable Gate Arrays (1998)

8. Pan, P., Liu, C.L.: Optimal Clock Period FPGA Technology Mapping for Sequential Circuits. ACM/IEEE Design Automation Conference, June (1996)

9. Pan, P., Liu, C.L.: Optimal Clock Period FPGA Technology Mapping for Sequential Circuits. ACM Trans. on Des. Autom. of Electron. Syst., 3(3), 437-462 (1998)