1294
правки
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
(не показано 7 промежуточных версий 1 участника) | |||
Строка 70: | Строка 70: | ||
Нетрудно доказать нижнюю границу как расширение границы Яо для точного сравнения строк [15]. Нижняя граница была достигнута в той же статье [3] для <math>k/m < 1/3 - O(1 / \sqrt{\sigma})</math>. Позднее она была улучшена до <math>k/m < 1/2 - O(1 / \sqrt{\sigma})</math> [6] с использованием несколько отличающейся идеи. Данный подход заключается в предварительном вычислении минимального расстояния для сопоставления любой возможной текстовой подстроки (блока) длины <math>(log_{\sigma} m)</math> в P. Затем текстовое окно поблочно сканируется в обратном направлении с добавлением этих заранее вычисленных минимальных расстояний. Если до окончания сканирования всего окна они превышают значение k, тогда никакое вхождение P с k ошибками не может содержать | Нетрудно доказать нижнюю границу как расширение границы Яо для точного сравнения строк [15]. Нижняя граница была достигнута в той же статье [3] для <math>k/m < 1/3 - O(1 / \sqrt{\sigma})</math>. Позднее она была улучшена до <math>k/m < 1/2 - O(1 / \sqrt{\sigma})</math> [6] с использованием несколько отличающейся идеи. Данный подход заключается в предварительном вычислении минимального расстояния для сопоставления любой возможной текстовой подстроки (блока) длины <math>O(log_{\sigma} m)</math> в P. Затем текстовое окно поблочно сканируется в обратном направлении с добавлением этих заранее вычисленных минимальных расстояний. Если до окончания сканирования всего окна они превышают значение k, тогда никакое вхождение P с k ошибками не может содержать отсканированные блоки, и окно можно безопасно сдвинуть поверх отсканированных блоков, продвигаясь по T. Это пример алгоритма ''фильтрации'', который отбрасывает большинство текстовых областей и применяет алгоритм ASM только к тем областям, которые не могут быть отброшены. | ||
Строка 79: | Строка 79: | ||
== Применение == | == Применение == | ||
Эта задача широко применяется в вычислительной биологии (для сравнения последовательностей ДНК и белков, восстановления после ошибок экспериментов, | Эта задача широко применяется в вычислительной биологии (для сравнения последовательностей ДНК и белков, восстановления после ошибок экспериментов, с целью выявления точек мутаций или прогнозирования сходства в структуре или функции), для текстового информационного поиска (для восстановления после ошибок транскрипции, набора или автоматического распознавания), обработки сигналов (для восстановления после ошибок при передаче и искажений) и в некоторых других областях. Подробнее об этом см. обсуждение в работе [11]. | ||
Существует немало расширений задачи ASM, особенно в вычислительной биологии. К примеру, можно заменить полные подстроки другими (''обобщенное расстояние редактирования''), поменять символы в строке (''сравнение строк с заменами или транспозициями''), выполнить обращение подстрок (''расстояние обращений''), присвоить | Существует немало расширений задачи ASM, особенно в вычислительной биологии. К примеру, можно заменить полные подстроки другими (''обобщенное расстояние редактирования''), поменять символы в строке (''сравнение строк с заменами или транспозициями''), выполнить обращение подстрок (''расстояние обращений''), присвоить переменную стоимость операциям вставки и удаления в случае их группировки (''сходство со штрафами за пропуски'') или искать любую пару подстрок обеих строк, обладающую достаточным сходством (''локальное сходство''). Примеры можно найти в книге Гусфилда [7], где рассматривается множество родственных задач. | ||
== Открытые вопросы == | == Открытые вопросы == | ||
Сложность задачи в наихудшем случае не вполне понятна. Для расстояния редактирования с единичной стоимостью она составляет <math>\Theta(n)</math> в случае, если <math>m = O(min(log \; n, (log_{\sigma} n)^2))</math> или <math>k = O(min(m^{1/4},log_{m \sigma} n))</math>. Для взвешенного расстояния редактирования сложность составляет <math>\Theta(n)</math> в случае <math>m = O(log_{\sigma} n)</math>. Неизвестно также, | Сложность задачи в наихудшем случае не вполне понятна. Для расстояния редактирования с единичной стоимостью она составляет <math>\Theta(n)</math> в случае, если <math>m = O(min(log \; n, (log_{\sigma} n)^2))</math> или <math>k = O(min(m^{1/4},log_{m \sigma} n))</math>. Для взвешенного расстояния редактирования сложность составляет <math>\Theta(n)</math> в случае <math>m = O(log_{\sigma} n)</math>. Неизвестно также, вплоть до какого значения k/m можно получить среднее время <math>O(n)</math>; до настоящего момента его удавалось получить для <math>k/m = 1/2 - O(1 / \sqrt{\sigma})</math>. | ||
== Экспериментальные результаты == | == Экспериментальные результаты == | ||
Строка 94: | Строка 94: | ||
== См. также == | == См. также == | ||
* [[Приближенное сравнение регулярных выражений]] – более сложный случай, где P может быть регулярным выражением | * [[Приближенное сравнение регулярных выражений]] – более сложный случай, где P может быть регулярным выражением | ||
* [[Индексированное приближенное сравнение строк]] относится к случаю, при котором возможна предварительная обработка текста | * [[Индексированное приближенное сравнение строк]] относится к случаю, при котором возможна предварительная обработка текста | ||
* [[Локальное выравнивание (с вогнутыми штрафами за пропуски)]] относится к более сложной схеме с весами | * [[Локальное выравнивание (с вогнутыми штрафами за пропуски)]] относится к более сложной схеме с весами, используемой в вычислительной биологии | ||
* [[Последовательное точное сравнение строк]] – упрощенная версия, в которой ошибки не допускаются | * [[Последовательное точное сравнение строк]] – упрощенная версия, в которой ошибки не допускаются | ||
Строка 130: | Строка 130: | ||
15. Yao, A.: The complexity of pattern matching for a random string. SIAM J. Comput. 8,368-387 (1979) | 15. Yao, A.: The complexity of pattern matching for a random string. SIAM J. Comput. 8,368-387 (1979) | ||
[[Категория: Совместное определение связанных терминов]] |