Аноним

Планарные геометрические остовы: различия между версиями

Материал из WEGA
 
(не показано 5 промежуточных версий 1 участника)
Строка 22: Строка 22:


== Основные результаты ==
== Основные результаты ==
Пусть S – конечное множество точек на плоскости, имеющих ''общее положение''; т.е. никакие три точки из S не лежат на одной прямой и никакие четыре – на одной окружности. [[Плоская_триангуляция|Триангуляцией]] Делоне для множества S является плоский граф с множеством вершин S, в котором (u, v) является ребром в том и только том случае, если существует окружность, проходящая через u и v, внутри которой не содержится ни одной точки S. (Поскольку точки S находятся в общем положении, этот граф представляет собой триангуляцию). Триангуляция Делоне на множестве из n точек на плоскости может быть построена за время O(n log n). Добкин, Фридман и Суповит [10] первыми показали, что коэффициент растяжения триангуляции Делоне ограничен константой. Они доказали, что триангуляция Делоне является t-остовом при <math>t = \pi (1 + \sqrt{5})/2 \;</math>. Наилучшую известную на данный момент верхнюю границу коэффициента растяжения для этого графа предложили Кил и Гутвин [12]:
Пусть S – конечное множество точек на плоскости, находящихся в ''общем положении''; т.е. никакие три точки из S не лежат на одной прямой и никакие четыре – на одной окружности. [[Плоская_триангуляция|Триангуляцией]] Делоне для множества S является плоский граф с множеством вершин S, в котором (u, v) является ребром в том и только том случае, если существует окружность, проходящая через u и v, внутри которой не содержится ни одной точки S. (Поскольку точки S находятся в общем положении, этот граф представляет собой триангуляцию). Триангуляция Делоне на множестве из n точек на плоскости может быть построена за время O(n log n). Добкин, Фридман и Суповит [10] первыми показали, что коэффициент растяжения триангуляции Делоне ограничен константой. Они доказали, что триангуляция Делоне является t-остовом при <math>t = \pi (1 + \sqrt{5})/2 \;</math>. Наилучшую известную на данный момент верхнюю границу коэффициента растяжения для этого графа предложили Кил и Гутвин [12]:




Строка 28: Строка 28:




Несколько более строгий результат был получен Бозе и др. [3]. Они доказали, что для любых двух точек p и q из S триангуляция Делоне содержит путь между p и q, длина которого не превышает <math>t = 4 \pi \sqrt{3} / 9 \; |pq|</math>, а длина каждого ребра на этом пути не превышает |pq|.
Несколько более строгий результат был получен Бозе и др. [3]. Они доказали, что для любых двух точек p и q из множества S триангуляция Делоне содержит путь между p и q, длина которого не превышает <math>4 \pi \sqrt{3} / 9 \; |pq|</math>, а длина каждого ребра на этом пути не превышает |pq|.




Левкопулос и Лингас [14] обобщили результат теоремы 1: Предположим, что дана триангуляция Делоне для множества S. Тогда для любого вещественного числа r > 0 за время O(n) можно построить плоский граф G с множеством вершин S, являющийся t-остовом S, где <math>t = (1 + 1/r) 4 \pi \sqrt{3}/9</math>, совокупная длина ребер которого будет не более чем в 2r + 1 раз превышать вес остовного дерева для S.
Левкопулос и Лингас [14] обобщили результат теоремы 1:
 
Предположим, что дана триангуляция Делоне для множества S. Тогда для любого вещественного числа r > 0 за время O(n) можно построить плоский граф G с множеством вершин S, являющийся t-остовом S, где <math>t = (1 + 1/r) 4 \pi \sqrt{3}/9</math>, совокупная длина ребер которого будет не более чем в 2r + 1 раз превышать вес минимального остовного дерева S.




Строка 40: Строка 42:




Дас и Джозеф [9] следующим образом обобщили утверждение теоремы 1 (см. рисунок). Пусть G – плоский граф с множеством вершин S, а <math>\alpha \;</math> – вещественное число, <math>0 < \alpha < \pi/2 \;</math>. Для любого ребра e графа G обозначим за <math>\Delta_1 \;</math> и <math>\Delta_2 \;</math> два равнобедренных треугольника с основанием e и углом при основании <math>\alpha \;</math>. Ребро e удовлетворяет ''свойству <math>\alpha \;</math>-ромба'', если по меньшей мере один из треугольников <math>\Delta_1 \;</math> и <math>\Delta_2 \;</math> не содержит внутри точек множества S. Плоский граф G удовлетворяет свойству <math>\alpha \;</math>-ромба, если каждое ребро e графа G удовлетворяет этому свойству. Для вещественного числа <math>d \ge 1 \;</math> граф G удовлетворяет свойству d-хорошего многоугольника, если для каждой грани f графа G и для каждых двух вершин p и q на границе f, таких, что соединяющий их отрезок прямой полностью находится в f, длина пути между p и q вдоль границы f не превышает d|pq|. Дас и Джозеф [9] доказали, что любой плоский граф, удовлетворяющий одновременно свойству <math>\alpha \;</math>-ромба и свойству d-хорошего многоугольника, является t-остовом для некоторого вещественного числа t, которое зависит только от <math>\alpha \;</math> и d. Значение t было несколько улучшено Ли [13]:
[[Файл:PGS_1.png]]


''С левой стороны изображено свойство <math>\alpha \;</math>-ромба. По меньшей мере один из треугольников <math>\Delta_1 \;</math> и <math>\Delta_2 \;</math> не содержит внутри точек множества S. Справа проиллюстрировано свойство d-хорошего многоугольника. p и q – две вершины на одной и той же грани f, которые видят друг друга. По меньшей мере один из двух путей между p и q вдоль границы f имеет длину, не превышающую d|pq|''


[[Файл:PGS_1.png]]


''С левой стороны изображено свойство <math>\alpha \;</math>-ромба. По меньшей мере один из треугольников <math>\Delta_1 \;</math> и <math>\Delta_2 \;</math> не содержит внутри точек множества S. Справа проиллюстрировано свойство d-хорошего многоугольника. p и q – две вершины на одной и той же грани f, которые видят друг друга. По меньшей мере один из двух путей между p и q вдоль границы f имеет длину, не превышающую d|pq|''
Дас и Джозеф [9] следующим образом обобщили утверждение теоремы 1 (см. рисунок). Пусть G – плоский граф с множеством вершин S, а <math>\alpha \;</math> – вещественное число, <math>0 < \alpha < \pi/2 \;</math>. Для любого ребра e графа G обозначим за <math>\Delta_1 \;</math> и <math>\Delta_2 \;</math> два равнобедренных треугольника с основанием e и углом при основании <math>\alpha \;</math>. Ребро e удовлетворяет ''свойству <math>\alpha \;</math>-ромба'', если по меньшей мере один из треугольников <math>\Delta_1 \;</math> и <math>\Delta_2 \;</math> не содержит внутри точек множества S. Плоский граф G удовлетворяет свойству <math>\alpha \;</math>-ромба, если каждое ребро e графа G удовлетворяет этому свойству. Для вещественного числа <math>d \ge 1 \;</math> граф G удовлетворяет ''свойству d-хорошего многоугольника'', если для каждой грани f графа G и для каждых двух вершин p и q на границе f, таких, что соединяющий их отрезок прямой полностью находится в f, длина кратчайшего пути между p и q вдоль границы f не превышает d|pq|. Дас и Джозеф [9] доказали, что любой плоский граф, удовлетворяющий одновременно свойству <math>\alpha \;</math>-ромба и свойству d-хорошего многоугольника, является t-остовом для некоторого вещественного числа t, которое зависит только от <math>\alpha \;</math> и d. Значение t было несколько улучшено Ли [13]:




'''Теорема 3. Пусть <math>\alpha \in (0, \pi / a) \;</math> и <math>d \ge 1 \;</math> – вещественные числа, а G – плоский граф, удовлетворяющий свойствам <math>\alpha \;</math>-ромба и d-хорошего многоугольника. В таком случае граф G является t-остовом для множества вершин G, где <math>t = \frac{8 (\pi - \alpha)^2 \; d}{\alpha^2 \; sin^2 (\alpha / 4)}</math>.'''
'''Теорема 3. Пусть <math>\alpha \in (0, \pi / 2) \;</math> и <math>d \ge 1 \;</math> – вещественные числа, а G – плоский граф, удовлетворяющий свойствам <math>\alpha \;</math>-ромба и d-хорошего многоугольника. В таком случае граф G является t-остовом для множества вершин G, где <math>t = \frac{8 (\pi - \alpha)^2 \; d}{\alpha^2 \; sin^2 (\alpha / 4)}</math>.'''




Строка 54: Строка 56:




Теперь рассмотрим задачу 2, касающуюся построения плоских остовов с невысокой максимальной степенью. Первый результат для этой задачи был получен Бозе и др. [2]. Они доказали, что триангуляция Делоне любого конечного множества точек содержит подграф с максимальной степенью не выше 27, являющийся t-остовом (для некоторого константного t). Ли и Ван [15] улучшили этот результат, показав, что триангуляция Делоне содержит t-остов со степенями не более 23. Если имеется триангуляция Делоне, подграфы в [2, 15] можно построить за время O(n). Лучший известный на сегодня результат для задачи 2 дали Бозе и др. [6]:
Теперь рассмотрим задачу 2, касающуюся построения плоских остовов с невысокой максимальной степенью. Первый результат для этой задачи был получен Бозе и др. [2]. Они доказали, что триангуляция Делоне любого конечного множества точек содержит подграф с максимальной степенью не выше 27, являющийся t-остовом (для некоторого константного t). Ли и Ван [15] улучшили этот результат, показав, что триангуляция Делоне содержит t-остов степенью не более 23. Если имеется триангуляция Делоне, подграфы в [2, 15] можно построить за время O(n). Лучший известный на сегодня результат для задачи 2 дали Бозе и др. [6]:




'''Теорема 4. Пусть S – множество n точек на плоскости. Триангуляция Делоне для множества S содержит подграф с максимальной степенью не выше 17, являющийся t-остовом S для некоторого константного t. Если имеется триангуляция Делоне, этот подграф можно построить за время O(n).'''
'''Теорема 4. Пусть S – множество n точек на плоскости. Триангуляция Делоне для множества S содержит подграф с максимальной степенью не выше 17, являющийся t-остовом S для некоторого константного t. Если имеется триангуляция Делоне для S, этот подграф можно построить за время O(n).'''
 


На самом деле результат оказался даже более общим:
На самом деле результат оказался даже более общим:
Строка 65: Строка 68:


== Применение ==
== Применение ==
Плоские остовы применяются при решении задач поиска путей и маршрутизации в режиме онлайн, которые возникают, например, в географических информационных системах и сетях коммуникаций. В этих областях применения, как правило, среда в целом неизвестна, и маршрутизацию приходится осуществлять, зная только местонахождение источника, точку назначения и ближайших соседей текущей позиции. Бозе и Морин [4, 5] показали, что в рамках этой модели имеются эффективные стратегии маршрутизации для планарных графов, такие как триангуляция Делоне и графы, одновременно удовлетворяющие свойствам <math>\alpha \;</math>-ромба и d-хорошего многоугольника. Эти стратегии являются конкурентными в том смысле, что длины рассчитанных путей не превышают произведения евклидова расстояния между источником и получателем на константный коэффициент. Кроме того, эти стратегии маршрутизации требуют ограниченного количества памяти.
Плоские остовы применяются при решении задач поиска путей и маршрутизации в режиме онлайн, которые возникают, например, в географических информационных системах и сетях коммуникаций. В этих областях применения, как правило, среда в целом неизвестна, и маршрутизацию приходится осуществлять, зная только местонахождение источника, точку назначения и ближайших соседей текущей позиции. Бозе и Морин [4, 5] показали, что в рамках этой модели имеются эффективные стратегии маршрутизации для плоских графов, такие как триангуляция Делоне и графы, одновременно удовлетворяющие свойствам <math>\alpha \;</math>-ромба и d-хорошего многоугольника. Эти стратегии являются конкурентными в том смысле, что длины рассчитанных путей не превышают произведения евклидова расстояния между источником и получателем на константный коэффициент. Кроме того, эти стратегии маршрутизации требуют ограниченного количества памяти.


== Открытые вопросы ==
== Открытые вопросы ==
Строка 116: Строка 119:


16. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge, UK (2007)
16. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge, UK (2007)
[[Категория: Совместное определение связанных терминов]]