1294
правки
Irina (обсуждение | вклад) м (→Нотация) |
KVN (обсуждение | вклад) |
||
(не показаны 3 промежуточные версии 1 участника) | |||
Строка 38: | Строка 38: | ||
В отличие от детерминированного случая для рандомизированных алгоритмов решения общей задачи MTS пока не сложилось полного понимания, и для общего случая неизвестны точные границы, подобные приведенным в теореме 1. | В отличие от детерминированного случая, для рандомизированных алгоритмов решения общей задачи MTS пока не сложилось полного понимания, и для общего случая неизвестны точные границы, подобные приведенным в теореме 1. | ||
Строка 44: | Строка 44: | ||
Доказательство лучших известных на данный момент границ для n-точечной метрики общего вида производится в два этапа. Вначале заданная метрика аппроксимируется ''ультраметрикой'', а затем доказывается | Доказательство лучших известных на данный момент границ для n-точечной метрики общего вида производится в два этапа. Вначале заданная метрика аппроксимируется ''ультраметрикой'', а затем доказывается граница коэффициента конкурентоспособности общей задачи MTS на ультраметрике. | ||
Строка 53: | Строка 53: | ||
Фиат и Мендель [9] предложили O(log n log log n)-конкурентный алгоритм для n-точечных ультраметрик, улучшающий (и использующий) результат Бартала, Блюма, Берча и Томкинса [1], которые представили первый | Фиат и Мендель [9] предложили O(log n log log n)-конкурентный алгоритм для n-точечных ультраметрик, улучшающий (и использующий) результат Бартала, Блюма, Берча и Томкинса [1], которые представили первый полилогарифмически- (или даже сублинейно)-конкурентный рандомизированный алгоритм решения общей задачи MTS на метрическом пространстве общего вида. | ||
Строка 71: | Строка 71: | ||
== Применение == | == Применение == | ||
Системы метрических задач были введены в качестве абстракции для онлайн-вычислений, они обобщают многие конкретные задачи онлайн-вычислений, такие как подкачка, взвешенное кэширование, k-серверная задача и обновление списков. Исторически | Системы метрических задач были введены в качестве абстракции для онлайн-вычислений, они обобщают многие конкретные задачи онлайн-вычислений, такие как подкачка, взвешенное кэширование, k-серверная задача и обновление списков. Исторически они служили индикаторами для общей теории конкурентных онлайн-вычислений. | ||
Строка 80: | Строка 80: | ||
== Открытые вопросы == | == Открытые вопросы == | ||
По-прежнему сохраняется очевидный разрыв между верхней и нижней границами рандомизированного коэффициента конкурентоспособности общей задачи MTS над | По-прежнему сохраняется очевидный разрыв между верхней и нижней границами рандомизированного коэффициента конкурентоспособности общей задачи MTS над конечными метриками общего вида. Известно, что, в отличие от детерминированного случая, рандомизированный коэффициент конкурентоспособности ''не является константным'' над всеми метрическими пространствами того же размера. Однако в случаях, когда известны точные границы, коэффициент конкурентоспособности равен <math>\Theta(log \; n)</math>. Из этого можно сделать очевидный вывод, что для любой n-точечной метрики рандомизированный коэффициент конкурентоспособности равен <math>\Theta(log \; n)</math>. Вероятно, самыми простыми классами метрических пространств, для которых неизвестна верхняя граница рандомизированного коэффициента конкурентоспособности лучше <math>O(log^2 n) \;</math>, являются пути и циклы. | ||
Строка 86: | Строка 86: | ||
Хотелось бы усилить формулировку теоремы 5 и получить детерминированный онлайн-алгоритм с полиномиальным временем выполнения, коэффициент конкурентоспособности которого для любого экземпляра задачи MTS на ''любом'' n-точечном метрическом пространстве не более чем в poly-log(n) превышает детерминированный коэффициент конкурентоспособности для этого экземпляра. | Хотелось бы усилить формулировку теоремы 5 и получить детерминированный онлайн-алгоритм с полиномиальным временем выполнения, коэффициент конкурентоспособности которого для любого экземпляра задачи MTS на ''любом'' n-точечном метрическом пространстве не более чем в poly-log(n) раз превышает детерминированный коэффициент конкурентоспособности для этого экземпляра. | ||
== См. также == | == См. также == | ||
Строка 121: | Строка 121: | ||
12. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. J. Eur. Math. Soc. 9(2), 253-275 (2007) | 12. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. J. Eur. Math. Soc. 9(2), 253-275 (2007) | ||
[[Категория: Совместное определение связанных терминов]] |