Аноним

Системы метрических задач: различия между версиями

Материал из WEGA
 
(не показано 14 промежуточных версий 1 участника)
Строка 7: Строка 7:


'''Определение 1 (система метрических задач)'''. Зафиксируем метрическое пространство <math>(X, d_X) \;</math>. Пусть <math>\Gamma = \{ (r_x)_{x \in X}: \forall x \in X, r(x) \in [0, \infty] \}</math> – множество всех возможных задач. Обозначим за <math>T \subset \Gamma \;</math> подмножество задач, называемых ''допустимыми''.
'''Определение 1 (система метрических задач)'''. Зафиксируем метрическое пространство <math>(X, d_X) \;</math>. Пусть <math>\Gamma = \{ (r_x)_{x \in X}: \forall x \in X, r(x) \in [0, \infty] \}</math> – множество всех возможных задач. Обозначим за <math>T \subset \Gamma \;</math> подмножество задач, называемых ''допустимыми''.


<math>MTS((X, d_X), T, a_0 \in X) \;</math>:
<math>MTS((X, d_X), T, a_0 \in X) \;</math>:
Строка 20: Строка 19:




Если X конечно, а последовательность задач x 2 Г* задана заранее, динамический алгоритм может вычислить оптимальное решение, используя память размером O(|X|) и время О(|т| |X|). Задача MTS интереснее всего в онлайновом режиме, в котором система должна реагировать на задачу x\ переходом в состояние ai 2 X, не зная будущих задач из x. Более формально:
Если X конечно, а последовательность задач <math>\tau \in T^* \;</math> задана заранее, динамический алгоритм может вычислить оптимальное решение, используя память размером <math>O(|X|) \;</math> и время <math>О(| \tau | \cdot |X|) \;</math>. Однако задача MTS интереснее всего в онлайновом режиме, в котором система должна реагировать на задачу <math>\tau_i \;</math> переходом в состояние <math>a_i \in X \;</math>, не зная будущих задач из <math>\tau \;</math>. Более формально:




Определение 2 (онлайн-алгоритмы для MTS). Детерминированный алгоритм решения задачи MTS((X, dX), T, a0) представляет собой отображение S: Г* ! X*, такое, что для любого x 2 T имеет место |S(T)| = \x . Детерминированный алгоритм S: Г* ! X* называется онлайновым, если для любых x, a 2 T*, существует a 2 X*, jaj = \a\, такое, что S(x о a) = S(x) о a. Рандомизированный онлайн-алгоритм представляет собой вероятностное распределение над детерминированными онлайн-алгоритмами.
'''Определение 2 (онлайн-алгоритмы для MTS)'''. Детерминированный алгоритм решения задачи <math>MTS((X, d_X), T, a_0) \;</math> представляет собой отображение <math>S: T^* \to X^* \;</math>, такое, что для любого <math>\tau \in T \;</math> имеет место <math>|S(\tau)| = |\tau| \;</math> . Детерминированный алгоритм <math>S: T^* \to X^* \;</math> называется ''онлайновым'', если для любых <math>\tau, \sigma \in T^* \;</math> существует <math>a \in X^*, |a| = | \sigma | \;</math>, такое, что <math>S(\tau \circ \sigma) = S(\tau) \circ a \;</math>. Рандомизированный онлайн-алгоритм представляет собой вероятностное распределение над детерминированными онлайн-алгоритмами.




Онлайн-алгоритмы для MTS оцениваются с помощью (асимптотического) конкурентного анализа, который, грубо говоря, вычисляет наихудшее отношение стоимости алгоритма к оптимальной стоимости по всем возможным последовательностям задач.
Онлайн-алгоритмы для MTS оцениваются с помощью ''(асимптотического) конкурентного анализа'', который, грубо говоря, вычисляет наихудшее отношение стоимости алгоритма к оптимальной стоимости по всем возможным последовательностям задач.




Определение 3. Рандомизированный онлайн-алгоритм R для задачи MTS((X, dX), a0) называется c-конкурентным (по сравнению с рассеянными соперниками), если существует b = b(X) 2 R, такое, что для любой последовательности задач x 2 T* и любой последовательности точек a 2 X*,
'''Определение 3'''. Рандомизированный онлайн-алгоритм R для задачи <math>MTS((X, d_X), T, a_0) \;</math> называется c-конкурентным (по сравнению с рассеянными соперниками), если существует <math>b = b(X) \in \mathbb{R} \;</math>, такое, что для любой последовательности задач <math>\tau \in T^* \;</math> и любой последовательности точек <math>a \in X^*, |a| = | \tau | \;</math>
N = 14
имеет место соотношение <math>\mathbb{E} [cost(\tau, R(\tau))] \le c \cdot cost(\tau, a) + b \;</math>, где математическое ожидание берется над распределением R.
имеет место соотношение E[cost(T,i?(r))] < c-cost(r, a) + b, где математическое ожидание берется над распределением R.




Коэффициентом конкурентоспособности онлайн-алгоритма R является инфимум над c > 1, для которого R является c-конкурентным. Детерминированным [соответственно, рандомизированным] коэффициентом конкурентоспособности задачи MTS((X, dX), T, a0) является инфимум над коэффициентами конкурентоспособности всех детерминированных [соответственно, рандомизированных] онлайн-алгоритмов для этой задачи. Отметим, что в силу наличия квантора существования при b асимптотический коэффициент конкурентоспособности (как рандомизированный, так и детерминированный) задачи MTS((X, dX), T, a0) независим от a0 и, следовательно, может быть исключен из нотации.
Коэффициентом конкурентоспособности онлайн-алгоритма R является инфимум над <math>c \ge 1 \;</math>, для которого R является c-конкурентным. Детерминированным [соответственно, рандомизированным] коэффициентом конкурентоспособности задачи <math>MTS((X, d_X), T, a_0) \;</math> является инфимум над коэффициентами конкурентоспособности всех детерминированных [соответственно, рандомизированных] онлайн-алгоритмов для этой задачи. Отметим, что в силу наличия квантора существования при ''b'' асимптотический коэффициент конкурентоспособности (как рандомизированный, так и детерминированный) задачи <math>MTS((X, d_X), T, a_0) \;</math> независим от <math>a_0 \;</math> и, следовательно, может быть исключен из нотации.


== Основные результаты ==
== Основные результаты ==
'''Теорема 1 [5]. Детерминированный коэффициент конкурентоспособности общей задачи MTS для любого n-точечного метрического пространства равен 2n - 1.'''
В отличие от детерминированного случая, для рандомизированных алгоритмов решения общей задачи MTS пока не сложилось полного понимания, и для общего случая неизвестны точные границы, подобные приведенным в теореме 1.
'''Теорема 2 [5,10]. Рандомизированный коэффициент конкурентоспособности общей задачи MTS для любого n-точечного униформного пространства (в котором все расстояния равны) составляет не менее <math>H_n = \sum_{i = 1}^{n - 1} i^{-1}</math> и не более <math>(1 + o(1))H_n \;</math>.'''
Доказательство лучших известных на данный момент границ для n-точечной метрики общего вида производится в два этапа. Вначале заданная метрика аппроксимируется ''ультраметрикой'', а затем доказывается граница коэффициента конкурентоспособности общей задачи MTS на ультраметрике.
'''Теорема 3 [8, 9]. Для любого n-точечного метрического пространства <math>(X, d_X) \;</math> существует <math>O(log^2 n \; log \; log \; n)</math>-конкурентный рандомизированный алгоритм решения общей задачи MTS на <math>(X, d_X) \;</math>.'''
Компонент аппроксимации метрики, упоминающийся в доказательстве теоремы 3, называется ''вероятностным вложением''. Оптимальное O(log n)-вероятностное вложение предложили Факчеренфол, Рао и Талвар [8], улучшившие результат Алона, Карпа, Пелега и Уэста, а также Бартала, который ввел это понятие. Другой тип аппроксимации метрики с лучшими границами для метрик с низкой ''пропорциональностью'' представлен в [3].
Фиат и Мендель [9] предложили O(log n log log n)-конкурентный алгоритм для n-точечных ультраметрик, улучшающий (и использующий) результат Бартала, Блюма, Берча и Томкинса [1], которые представили первый полилогарифмически- (или даже сублинейно)-конкурентный рандомизированный алгоритм решения общей задачи MTS на метрическом пространстве общего вида.
'''Теорема 4 [2, 12]. Для любого n-точечного метрического пространства <math>(X, d_X) \;</math> рандомизированный коэффициент конкурентоспособности для общей задачи MTS на <math>(X, d_X) \;</math> составляет не менее <math>\Omega (log \; n /log \; log \; n)</math>.'''
Компонент аппроксимации метрики, упоминающийся в доказательстве теоремы 4, называется ''подмножествами Рамсея''. Первыми в этом контексте его использовали Карлофф, Рабани и Равид, впоследствии результат улучшили Блюм, Карлофф, Рабани и Сакс, а также Бартал, Боллобас и Мендель [2]. Строгий результат для подмножеств Рамсея доказали Бартал, Линиал, Мендель и Наор. Более простое (и строгое) доказательство можно найти в работе [12].
Нижняя граница <math>\Omega (log \; n /log \; log \; n)</math> коэффициента конкурентоспособности любого рандомизированного алгоритма решения общей задачи MTS на n-точечной ультраметрике была доказана в [2], улучшив тем самым предыдущие результаты Карлоффа, Рабани и Равида, а также Блюма, Карлоффа, Рабани и Сакса.
Следующая теорема, в отличие от остальных, не рассматривает общую задачу MTS.
'''Теорема 5 [6]. Задача определения коэффициента конкурентоспособности для данного экземпляра задачи <math>MTS ((X, d_X), a_0 \in X, T) \;</math> является [[PSPACE-hard problem|PSPACE-трудной]], даже если метрика <math>d_X \;</math> является униформной. С другой стороны, если метрика <math>d_X \;</math> является униформной, существует детерминированный онлайн-алгоритм с полиномиальным временем выполнения для решения задачи <math>MTS((X, d_X), a_0 \in X, T) \;</math>, коэффициент конкурентоспособности которого в O(log |X|) раз превышает детерминированный коэффициент конкурентоспособности алгоритма для <math>MTS((X, d_X), a_0, T) \;</math>. Предполагается, что экземпляр <math>((X, d_X), a_0, T) \;</math> задан явным образом.'''
== Применение ==
Системы метрических задач были введены в качестве абстракции для онлайн-вычислений, они обобщают многие конкретные задачи онлайн-вычислений, такие как подкачка, взвешенное кэширование, k-серверная задача и обновление списков. Исторически они служили индикаторами для общей теории конкурентных онлайн-вычислений.
Основным техническим вкладом модели MTS является разработка алгоритма рабочей функции, используемого для доказательства верхней границы в теореме 1. Кутсупиас и Пападимитриу впоследствии проанализировали этот алгоритм в контексте k-серверной задачи и показали, что он является (2k - 1)-конкурентным. Кроме того, хотя модель MTS служит обобщением k-серверной задачи, общая задача MTS на n-точечной метрике по существу эквивалентна (n - 1)-серверной задаче на той же метрике [2]. Следовательно, из нижних границ коэффициента конкурентоспособности общей задачи MTS можно получить нижние границы для k-серверной задачи, а алгоритмы решения общей задачи MTS могут стать первым шагом к разработке алгоритма для решения k-серверной задачи, как и в случае с алгоритмом рабочей функции.
Аппроксимации метрики, использовавшиеся в теоремах 3 и 4, нашли немало других алгоритмических применений.
== Открытые вопросы ==
По-прежнему сохраняется очевидный разрыв между верхней и нижней границами рандомизированного коэффициента конкурентоспособности общей задачи MTS над конечными метриками общего вида. Известно, что,  в отличие от детерминированного случая, рандомизированный коэффициент конкурентоспособности ''не является константным'' над всеми метрическими пространствами того же размера. Однако в случаях, когда известны точные границы, коэффициент конкурентоспособности  равен <math>\Theta(log \; n)</math>. Из этого можно сделать очевидный вывод, что для любой n-точечной метрики рандомизированный коэффициент конкурентоспособности равен <math>\Theta(log \; n)</math>. Вероятно, самыми простыми классами метрических пространств, для которых неизвестна верхняя граница рандомизированного коэффициента конкурентоспособности лучше <math>O(log^2 n) \;</math>, являются пути и циклы.
Кроме того, не хватает «средней теории» для задачи MTS. С одной стороны, общая задача MTS достаточно хорошо изучена. С другой же стороны, такие специализированные задачи MTS, как обновление списков, детерминированные k-серверные алгоритмы и детерминированное взвешенное кэширование, также хорошо изучены и имеют намного лучшие коэффициенты конкурентоспособности по сравнению с соответствующей общей задачей. На данный момент недостает «промежуточных» моделей MTS, которые могли бы объяснить низкие коэффициенты конкурентоспособности для некоторых конкретных онлайн-задач, упомянутых выше.
Хотелось бы усилить формулировку теоремы 5 и получить детерминированный онлайн-алгоритм с полиномиальным временем выполнения, коэффициент конкурентоспособности которого для любого экземпляра задачи MTS на ''любом'' n-точечном метрическом пространстве не более чем в poly-log(n) раз превышает детерминированный коэффициент конкурентоспособности для этого экземпляра.
== См. также ==
* [[Алгоритм DC-дерева для k серверов на деревьях]]
* [[Аппроксимация метрических пространств древесными метриками]]
* [[Онлайн-алгоритм обновления списков]]
* [[Онлайн-алгоритм подкачки и кэширования]]
* [[Подкачка страниц]]
* [[Задача об аренде лыж]]
* [[Алгоритм рабочей функции для k серверов]]
== Литература ==
1. Bartal, Y.,  Blum,  A.,  Burch,  C., Tomkins,  A.:  A  polylog()-competitive algorithm for metrical task systems. In: Proceedings of the 29th annual ACM Symposium on the Theory of Computing, pp. 711-719. ACM, New York (1997)
2. Bartal, Y., Bollobas, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst.Sci. 72,890-921 (2006)
3. Bartal, Y., Mendel,  M.: Multiembedding  of metric spaces. SIAM J. Comput. 34, 248-259 (2004)
4. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, Cambridge, UK (1998)
5. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39, 745-763 (1992)
6. Burley, W.R., Irani, S.: On algorithm design for metrical task systems. Algorithmica 18,461^85 (1997)
7. Chrobak, M., Larmore, L.L.: Metrical task systems, the server problem and the work function algorithm. In: Fiat, A., Woeginger, G J. (eds.) Online Algorithms. The State of the Art. LNCS, vol. 1442, ch.4, pp. 74-96. Springer, London (1998)
8. Fakcharoenphol, J., Rao, S.,Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69,485-497(2004)
9. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J.  Comput. 32, 1403-1422 (2003)
10. Irani, S., Seiden, S.S.: Randomized algorithms for metrical task systems. Theor. Comput. Sci. 194,163-182 (1998)
11. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server problems. J. Algorithms 11,208-230 (1990)
12. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. J. Eur. Math. Soc. 9(2), 253-275 (2007)
[[Категория: Совместное определение связанных терминов]]