1294
правки
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
(не показаны 4 промежуточные версии 1 участника) | |||
Строка 42: | Строка 42: | ||
(1) добавить в концу строки s специальный символ $, который меньше любого другого символа в <math>\Sigma \;</math>; | (1) добавить в концу строки s специальный символ $, который меньше любого другого символа в <math>\Sigma \;</math>; | ||
(2) сформировать ''концептуальную'' матрицу <math>\mathcal{M} \;</math>, строки которой содержат | (2) сформировать ''концептуальную'' матрицу <math>\mathcal{M} \;</math>, строки которой содержат циклические сдвиги строки s$, отсортированные в лексикографическом порядке; | ||
(3) построить преобразованный текст <math>\hat{s} = bwt(s) \;</math>, взяв последний столбец матрицы <math>\mathcal{M} \;</math> (см. рис. 1). | (3) построить преобразованный текст <math>\hat{s} = bwt(s) \;</math>, взяв последний столбец матрицы <math>\mathcal{M} \;</math> (см. рис. 1). | ||
Строка 76: | Строка 76: | ||
[[Файл:BTC_1.png]] | [[Файл:BTC_1.png]] | ||
Матрица bwt (слева) и суффиксное дерево (справа) для строки s = mississippi$. Выходным значением алгоритма bwt является последний столбец матрицы bwt, т.е. | Матрица bwt (слева) и суффиксное дерево (справа) для строки s = mississippi$. Выходным значением алгоритма bwt является последний столбец матрицы bwt, т.е. <math>\hat{s} = bwt(s) = ipssm$pissii \;</math>. | ||
Обозначим за C функцию, которая ассоциирует с каждой строкой x над <math>\Sigma \cup \{ $ \} \;</math> положительное вещественное значение C(x). Для любого листового покрытия <math>\mathcal{L} \;</math> определим его стоимость как <math>C(\mathcal{L}) = \sum_{u \in \mathcal{L}} C( \hat{s} \langle u \rangle) \;</math> | Обозначим за C функцию, которая ассоциирует с каждой строкой x над <math>\Sigma \cup \{ $ \} \;</math> положительное вещественное значение C(x). Для любого листового покрытия <math>\mathcal{L} \;</math> определим его стоимость как <math>C(\mathcal{L}) = \sum_{u \in \mathcal{L}} C( \hat{s} \langle u \rangle) \;</math>. Иными словами, стоимость листового покрытия <math>\mathcal{L} \;</math> равна сумме стоимостей строк в разбиении, порожденном <math>\mathcal{L} \;</math>. Листовое покрытие <math>\mathcal{L}_{min} \;</math> называется ''оптимальным'' относительно C, если <math>C(\mathcal{L}_{min}) \le C(\mathcal{L}) \;</math> для любого листового покрытия <math>\mathcal{L} \;</math>. | ||
Пусть A – алгоритм сжатия, такой, что для любой строки x размер ее выходного значения ограничен <math>|x| H_0(x) + \eta |x| + \mu \;</math> бит, где <math>\eta \;</math> и <math>\mu \;</math> – константы. Определим функцию стоимости <math>C_A(x) = |x| H_0 (x) + \eta |x| + \mu \;</math>. В работе [3] Ферраджина и коллеги используют жадный алгоритм с линейным временем выполнения, вычисляющий оптимальное листовое покрытие <math>\mathcal{L}_{min} \;</math> относительно <math>C_A \;</math>. Авторы работы [3] также показали, что для любого <math>k \ge 0 \;</math> существует листовое покрытие <math>\mathcal{L}_k \;</math> стоимостью <math>C_A(\mathcal{L}_k) = |s| H_k(s) + \eta |s| + O(|\Sigma|^k) \;</math>. Эти два важнейших наблюдения показывают, что при использовании A для сжатия каждой подстроки в разбиении, порожденном оптимальным листовым покрытием <math>\mathcal{L}_{min} \;</math>, общий размер выходного значения | Пусть A – алгоритм сжатия, такой, что для любой строки x размер ее выходного значения ограничен <math>|x| H_0(x) + \eta |x| + \mu \;</math> бит, где <math>\eta \;</math> и <math>\mu \;</math> – константы. Определим функцию стоимости <math>C_A(x) = |x| H_0 (x) + \eta |x| + \mu \;</math>. В работе [3] Ферраджина и коллеги используют жадный алгоритм с линейным временем выполнения, вычисляющий оптимальное листовое покрытие <math>\mathcal{L}_{min} \;</math> относительно <math>C_A \;</math>. Авторы работы [3] также показали, что для любого <math>k \ge 0 \;</math> существует листовое покрытие <math>\mathcal{L}_k \;</math> стоимостью <math>C_A(\mathcal{L}_k) = |s| H_k(s) + \eta |s| + O(|\Sigma|^k) \;</math>. Эти два важнейших наблюдения показывают, что при использовании A для сжатия каждой подстроки в разбиении, порожденном оптимальным листовым покрытием <math>\mathcal{L}_{min} \;</math>, общий размер выходного значения ограничен в терминах <math>|s| H_k(s) \;</math> для любого <math>k \ge 0 \;</math>. На деле <math>\sum_{u \in \mathcal{L}_{min}} C_A (\hat{s} \langle u \rangle ) = C_A(\mathcal{L}_{min}) \le C_A (\mathcal{L}_k) = |s| H_k(s) + \eta|s| + O(|\Sigma|^k)</math>. | ||
Строка 94: | Строка 94: | ||
Таким образом, парадигма усиления сводит разработку эффективных алгоритмов сжатия, использующих информацию контексте, к (обычно более простой) разработке алгоритмов сжатия нулевого порядка. Эффективность этой парадигмы описывается следующей теоремой. | Таким образом, парадигма усиления сводит разработку эффективных алгоритмов сжатия, использующих информацию о контексте, к (обычно более простой) разработке алгоритмов сжатия нулевого порядка. Эффективность этой парадигмы описывается следующей теоремой. | ||
'''Теорема 1 ([Ферраджина и др., 2005). Пусть A – алгоритм сжатия, который сжимает любую строку x до размера не более <math>|x| H_0(x) + \eta |x| + \mu \;</math> бит. Механизм усиления степени сжатия, примененный к A, дает выходное значение, размер которого ограничен <math>|s| H_k(s) + log |s| + \eta |s| + O(|\Sigma|^k) \;</math> бит одновременно для всех <math>k \ge 0 \;</math>. Учитывая A, механизм усиления привносит в процесс сжатия дополнительные накладные расходы на память в размере O(|s| log |s|) бит, но не вносит дополнительных затрат времени.''' | '''Теорема 1 ([Ферраджина и др., 2005). Пусть A – алгоритм сжатия, который сжимает любую строку x до размера не более <math>|x| H_0(x) + \eta |x| + \mu \;</math> бит. Механизм усиления степени сжатия, примененный к A, дает выходное значение, размер которого ограничен <math>|s| H_k(s) + log |s| + \eta |s| + O(|\Sigma|^k) \;</math> бит одновременно для всех <math>k \ge 0 \;</math>. Учитывая A, механизм усиления привносит в процесс сжатия дополнительные накладные расходы на память в размере O(|s| log |s|) бит, но не вносит дополнительных асимптотических затрат времени.''' | ||
Строка 109: | Строка 109: | ||
== Экспериментальные результаты == | == Экспериментальные результаты == | ||
Исследование нескольких алгоритмов сжатия, основанных на усилении, и сравнение их с другими современными способами сжатия приведено в работе [ ]. Эксперименты показывают, что техника усиления является более надежной по сравнению с другими подходами и хорошо работает даже с менее эффективными алгоритмами сжатия нулевого порядка. Однако положительные результаты достигаются за счет использования большего количества ресурсов (времени и памяти). | Исследование нескольких алгоритмов сжатия, основанных на усилении, и сравнение их с другими современными способами сжатия приведено в работе [4]. Эксперименты показывают, что техника усиления является более надежной по сравнению с другими подходами на базе алгоритма bwt и хорошо работает даже с менее эффективными алгоритмами сжатия нулевого порядка. Однако положительные результаты достигаются за счет использования большего количества ресурсов (времени и памяти). | ||
== Наборы данных == | == Наборы данных == | ||
Строка 140: | Строка 140: | ||
8. Navarro, G., Makinen, V.: Compressed full text indexes. ACM Comput. Surv.39(1) (2007) | 8. Navarro, G., Makinen, V.: Compressed full text indexes. ACM Comput. Surv.39(1) (2007) | ||
[[Категория: Совместное определение связанных терминов]] | |||
9. Salomon, D.: Data Compression: the Complete Reference, 4th edn. Springer, London (2004) | 9. Salomon, D.: Data Compression: the Complete Reference, 4th edn. Springer, London (2004) | ||
10. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 2,197-227 (1990) | 10. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 2,197-227 (1990) |