1313
правок
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
| (не показаны 3 промежуточные версии 1 участника) | |||
| Строка 79: | Строка 79: | ||
(2) <math>HPWL_{p - \beta - reg} (G_h) = \sum_{e_k \in E_h} \bigg( \sum_{i,j \in C_k} |x_i - x_j|^p + \beta \bigg)^{1/p} \;</math>, | (2) <math>HPWL_{p - \beta - reg} (G_h) = \sum_{e_k \in E_h} \bigg( \sum_{i,j \in C_k} |x_i - x_j|^p + \beta \bigg)^{1/p} \;</math>, | ||
которая оценивает сверху функцию HPWL с произвольно малой относительной ошибкой | которая оценивает сверху функцию HPWL с произвольно малой относительной ошибкой при <math>p \to \infty \;</math> и <math>\beta \to 0 \;</math> [7]. Кроме того, HPWL также можно аппроксимировать при помощи функции, задаваемой формулой | ||
(3) <math>HPWL_{log-sum-exp}(G_h) = \alpha \sum_{e_k \in E_h} \bigg[ ln \bigg( \sum_{i \in C_k} exp \bigg( \frac{x_i}{ \alpha} \bigg) \bigg) + ln \bigg( \sum_{v_i \in C_k} exp \bigg( \frac{- x_i}{ \alpha} \bigg) \bigg) \bigg] \;</math> | (3) <math>HPWL_{log-sum-exp}(G_h) = \alpha \sum_{e_k \in E_h} \bigg[ ln \bigg( \sum_{i \in C_k} exp \bigg( \frac{x_i}{ \alpha} \bigg) \bigg) + ln \bigg( \sum_{v_i \in C_k} exp \bigg( \frac{- x_i}{ \alpha} \bigg) \bigg) \bigg] \;</math>, | ||
где <math>\alpha > 0 \;</math> – параметр сглаживания [6]. Обе аппроксимации можно оптимизировать с использованием метода сопряженных градиентов. | где <math>\alpha > 0 \;</math> – параметр сглаживания [6]. Обе аппроксимации можно оптимизировать с использованием метода сопряженных градиентов. | ||
| Строка 93: | Строка 93: | ||
'''Распространение под действием силы''' | '''Распространение под действием силы''' | ||
Базовая идея заключается в | Базовая идея заключается в добавлении постоянных по величине сил '''f''', которые «отталкивают» вершины от перекрытий, и перевычислении сил на нескольких итерациях, отражая изменения в распределении вершин. Для квадратичной компоновки новые условия оптимальности выглядят следующим образом: <math>\mathbf{Q} \mathbf{x} + \mathbf{c} + \mathbf{f} = \mathbf{0} \;</math> [8]. Постоянная по величине сила может изменять компоновку различными способами, добиваясь удовлетворения целевых ограничений плотности. Сила '''f''' вычисляется при помощи дискретной версии уравнения Пуассона. | ||
| Строка 112: | Строка 112: | ||
'''Распространение на основе потенциальной функции''' | '''Распространение на основе потенциальной функции''' | ||
Целевые ограничения плотности могут удовлетворяться также при помощи штрафной функции. Площадь, присвоенная контейнеру <math>B_{ij} \;</math> вершиной <math>v_i \;</math>, представлена колоколообразной функцией <math>Potential(v_i, B_{ij}) \;</math>. Из-за использования кусочно-линейных квадратичных функций потенциальная функция оказывается невыпуклой, | Целевые ограничения плотности могут удовлетворяться также при помощи штрафной функции. Площадь, присвоенная контейнеру <math>B_{ij} \;</math> вершиной <math>v_i \;</math>, представлена колоколообразной функцией <math>Potential(v_i, B_{ij}) \;</math>. Из-за использования кусочно-линейных квадратичных функций потенциальная функция оказывается невыпуклой, но гладкой и дифференцируемой [6]. Штрафной член, задаваемый соотношением | ||
(5) <math>Penalty = \sum_{B_{ij} \in B} \bigg( \sum_{v_i \in V_h} Potential(v_i, B_{ij}) - K \bigg)^2 \;</math> | (5) <math>Penalty = \sum_{B_{ij} \in B} \bigg( \sum_{v_i \in V_h} Potential(v_i, B_{ij}) - K \bigg)^2 \;</math> | ||
| Строка 125: | Строка 125: | ||
== Наборы данных == | == Наборы данных == | ||
В эталонный комплект входят пакеты ICCAD '04 (http://vlsicad. eecs.umich.edu/BK/ICCAD04bench/), ISPD '05 (http://www.sigda.org/ispd2005/contest.htm) и ISPD '06 (http://www.sigda.org/ispd2006/contest. htm). Экземпляры этих эталонных пакетов содержат от 10 тысяч до 2,5 миллионов размещаемых объектов. Также имеются и другие широко используемые пакеты, включая крупномасштабные экземпляры задач компоновки с известными оптимальными решениями (http://cadlab.cs.ucla.edu/~pubbench). | В эталонный комплект входят пакеты ICCAD '04 (http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/), ISPD '05 (http://www.sigda.org/ispd2005/contest.htm) и ISPD '06 (http://www.sigda.org/ispd2006/contest.htm). Экземпляры этих эталонных пакетов содержат от 10 тысяч до 2,5 миллионов размещаемых объектов. Также имеются и другие широко используемые пакеты, включая крупномасштабные экземпляры задач компоновки с известными оптимальными решениями (http://cadlab.cs.ucla.edu/~pubbench). | ||
== См. также == | == См. также == | ||
| Строка 154: | Строка 154: | ||
12. Tang, X., Tian, R., Wong, M.D.F.: Optimal redistribution of white space for wirelength minimization. In: Tang, T.-A. (ed.) Proc. Asia South Pac. Design Autom. Conf., ACM Press, 18-21 Jan 2005, Shanghai. pp. 412-417 (2005) | 12. Tang, X., Tian, R., Wong, M.D.F.: Optimal redistribution of white space for wirelength minimization. In: Tang, T.-A. (ed.) Proc. Asia South Pac. Design Autom. Conf., ACM Press, 18-21 Jan 2005, Shanghai. pp. 412-417 (2005) | ||
[[Категория: Совместное определение связанных терминов]] | |||