Аноним

Планарные остовы ограниченной степени с малыми весами: различия между версиями

Материал из WEGA
мНет описания правки
 
(не показаны 3 промежуточные версии 2 участников)
Строка 1: Строка 1:
Ключевые слова и синонимы: [[унифицированное энергоэффективное управление одноадресной и широковещательной топологиями]]
'''Планарные остовы ограниченной степени с малыми весами ---''' Degree-bounded planar spanner
 
with low weight 
 
Ключевые слова и синонимы: унифицированное энергоэффективное управление одноадресной и широковещательной топологиями (Unified energy-efficient unicast and broadcast topology
 
control)


== Постановка задачи ==
== Постановка задачи ==
Важным требованием к децентрализованным беспроводным сетям является возможность их самоорганизации; необходима динамическая реструктуризация диапазонов передачи и трактов передачи данных при изменении топологии. Рациональное использование энергии и производительность работы сети – два наиболее важных параметра функционирования децентрализованных беспроводных сетей, поскольку беспроводные устройства обычно работают только от аккумуляторов, а их вычислительные возможности и объем памяти ограничены. Таким образом, в этой динамичной среде с ограниченными ресурсами каждый беспроводной узел должен локально выбирать соседей по коммуникации и соответствующим образом корректировать мощность передачи; в результате все узлы сети самостоятельно формируют топологию, являющуюся энергоэффективной и для одноадресной передачи, и для широковещательной трансляции.
Важным требованием к децентрализованным беспроводным сетям является возможность их самоорганизации; необходима динамическая реструктуризация диапазонов передачи и трактов передачи данных при изменении топологии. Рациональное использование энергии и производительность работы сети – два наиболее важных параметра функционирования децентрализованных беспроводных сетей, поскольку беспроводные устройства обычно работают только от аккумуляторов, а их вычислительные возможности и объем памяти ограничены. Таким образом, в этой динамичной среде с ограниченными ресурсами каждый беспроводной узел должен локально выбирать соседей по коммуникации и соответствующим образом корректировать мощность передачи; в результате все узлы сети самостоятельно формируют топологию, являющуюся энергоэффективной и для одноадресной передачи, и для широковещательной рассылки.


Для поддержки энергоэффективной одноадресной передачи топология должна обладать следующими свойствами:
Для поддержки энергоэффективной одноадресной передачи топология должна обладать следующими свойствами:


1. СИЛЬНЫЙ ОСТОВ: [1, 9, 13, 16, 17]. Подграф H называется [[сильный остов|сильным остовом]] графа G, если существует положительная вещественная константа <math>\rho\ </math>, такая, что для любых двух вершин графа потребление энергии на кратчайшем пути в H не более чем в <math>\rho\ </math> раз выше потребления энергии на кратчайшем пути в G. <math>\rho\ </math> называется [[коэффициент растяжения по мощности|коэффициентом растяжения по мощности]] или просто [[коэффициент растяжения|коэффициентом растяжения]].
1. СИЛОВОЙ ОСТОВ: [1, 9, 13, 16, 17]. Подграф H называется [[Силовой остов|''силовым остовом'']] графа G, если существует положительная вещественная константа <math>\rho\ </math>, такая, что для любых двух вершин графа потребление энергии на кратчайшем пути в H не более чем в <math>\rho\ </math> раз выше потребления энергии на кратчайшем пути в G. <math>\rho\ </math> называется [[коэффициент растяжения по мощности|''коэффициентом растяжения по мощности'']] или просто [[коэффициент растяжения|''коэффициентом растяжения'']].


2. ОГРАНИЧЕННАЯ СТЕПЕНЬ: [1, 9, 11, 13, 16, 17]. Желательно также, чтобы логическая степень узла в построенной топологии была ограничена сверху некоторой небольшой константой. Структуры с ограниченной логической степенью находят применение в беспроводных сетях, работающих по протоколу Bluetooth, в которых главный узел может одновременно иметь не более семи подчиненных узлов. Структура с логическими узлами невысокой степени сокращает стоимость обновления таблицы маршрутизации при мобильности узлов. Структура с малым значением степени и укороченными связями может значительно повысить общую пропускную способность сети [6].
2. ОГРАНИЧЕННАЯ СТЕПЕНЬ: [1, 9, 11, 13, 16, 17]. Желательно также, чтобы логическая степень узла в построенной топологии была ограничена сверху некоторой небольшой константой. Структуры с ограниченной логической степенью находят применение в беспроводных сетях, работающих по протоколу Bluetooth, в которых главный узел может одновременно иметь не более семи подчиненных узлов. Структура с логическими узлами невысокой степени сокращает стоимость обновления таблицы маршрутизации при мобильности узлов. Структура с малым значением степени и укороченными связями может значительно повысить общую пропускную способность сети [6].
Строка 13: Строка 19:




Для поддержки энергоэффективной широковещательной связи [15] локально построенная топология должна обладать свойством [[малые веса|малых весов]]: полная длина линии связи финальной топологии не более чем в константное число раз превышает длину линии в [[минимальное Евклидово остовное дерево|минимальном Евклидовом остовном дереве]] (Euclidean Minimum Spanning Tree, EMST). Некоторые локализованные алгоритмы [10, 12] были применены для построения структур с малыми весами, способных аппроксимировать энергоэфективность EMST по мере роста плотности сети. Однако ни один из них не был достаточно энергоэффективным для одноадресной передачи.
Для поддержки энергоэффективной широковещательной связи [15] локально построенная топология должна обладать свойством ''малых весов'': полная длина линии связи финальной топологии не более чем в константное число раз превышает длину линии в [[Евклидов минимальное остовное дерево|Евклидово минимальном остовном дереве]] (Euclidean Minimum Spanning Tree, EMST). Некоторые локализованные алгоритмы [10, 12] были применены для построения структур с малыми весами, способных аппроксимировать энергоэфективность EMST по мере роста плотности сети. Однако ни один из них не был достаточно энергоэффективным для одноадресной передачи.


До сих пор все известные алгоритмы управления топологиями не были способны обеспечить энергоэффективные одноадресную и широковещательную передачи в рамках одной и той же структуры. Была поставлена задача проектирования унифицированной топологии, обладающей одновременно свойствами остовности и малых весов. Основной целью разработки алгоритма было решение этой задачи.
До сих пор все известные алгоритмы управления топологиями не были способны обеспечить энергоэффективные одноадресную и широковещательную передачи в рамках одной и той же структуры. Была поставлена задача проектирования унифицированной топологии, обладающей одновременно свойствами остовности и малых весов. Основной целью разработки алгоритма было решение этой задачи.
Строка 23: Строка 29:
1. '''Энергоэффективная одноадресная передача''': пусть даны два любых узла, тогда между ними в структуре существует путь, полные энергозатраты которого не более чем в <math>2 \rho\ + 1</math> раза превышают энергозатраты любого пути, соединяющего их в исходной сети. Здесь <math>\rho\ > 1</math> – некоторая константа, которая будет определена далее в описании алгоритма. Предполагается, что каждый узел u может корректировать свою мощность так, чтобы успешно доставать до своего соседа v на любом выбранном пути одноадресной передачи.
1. '''Энергоэффективная одноадресная передача''': пусть даны два любых узла, тогда между ними в структуре существует путь, полные энергозатраты которого не более чем в <math>2 \rho\ + 1</math> раза превышают энергозатраты любого пути, соединяющего их в исходной сети. Здесь <math>\rho\ > 1</math> – некоторая константа, которая будет определена далее в описании алгоритма. Предполагается, что каждый узел u может корректировать свою мощность так, чтобы успешно доставать до своего соседа v на любом выбранном пути одноадресной передачи.


2. '''Энергоэффективная широковещательная передача''': энергопотребление широковещательной связи не более чем в константное число раз превышает оптимальное энергопотребление среди всех локально сконструированных структур. В [10] было показано, что для доказательства справедливости этого утверждения достаточно доказать, что структура имеет малые веса. Мы говорим, что структура имеет малые веса, если полная длина ее ребер не более чем в константное число раз превышает полную длину ребер в минимальном Евклидовом остовном дереве. Для случая широковещательной передачи и в целом любой многоабонентской передачи предполагается, что каждый узел u может корректировать свою мощность так, чтобы успешно доставать до самого далекого достижимого узла любой выбранной структуры (обычно дерева) при передаче нескольким абонентам.
2. '''Энергоэффективная широковещательная рассылка''': энергопотребление широковещательной связи не более чем в константное число раз превышает оптимальное энергопотребление среди всех локально сконструированных структур. В [10] было показано, что для доказательства справедливости этого утверждения достаточно доказать, что структура имеет малые веса. Мы говорим, что структура имеет малые веса, если полная длина ее ребер не более чем в константное число раз превышает полную длину ребер в минимальном Евклидовом остовном дереве. Для случая широковещательной рассылки и в целом любой многоабонентской рассылки предполагается, что каждый узел u может корректировать свою мощность так, чтобы успешно доставать до самого далекого достижимого узла любой выбранной структуры (обычно дерева) при передаче нескольким абонентам.


3. '''Ограниченная логическая степень узла''': каждый узел должен связываться не более чем с k – 1 логическими соседями, где <math>k \ge 9</math> – настраиваемый параметр.
3. '''Ограниченная логическая степень узла''': каждый узел должен связываться не более чем с k – 1 логическими соседями, где <math>k \ge 9</math> – настраиваемый параметр.
Строка 33: Строка 39:
6. '''<math>\Theta\ </math>-разделенные соседи''': направления между любыми двумя логическими соседями любого узла разделены углом не менее <math>\Theta\ </math>, что снижает интерференцию коммуникации.
6. '''<math>\Theta\ </math>-разделенные соседи''': направления между любыми двумя логическими соседями любого узла разделены углом не менее <math>\Theta\ </math>, что снижает интерференцию коммуникации.


Это первая известная локализованная стратегия управления топологиями для всех узлов, совместно поддерживающих такую простую структуру с подобными свойствами. Прежде был известен только централизованный алгоритм, представленный в [1]. Первый шаг представляет собой Алгоритм 1, который строит энергоэффективную топологию для одноадресной передачи; затем Алгоритм 2 строит топологию, способную одновременно поддерживать энергоэффективную широковещательную передачу.
Это первая известная локализованная стратегия управления топологиями для всех узлов, совместно поддерживающих такую простую структуру с подобными свойствами. Прежде был известен только централизованный алгоритм, представленный в [1]. Первый шаг представляет собой Алгоритм 1, который строит энергоэффективную топологию для одноадресной передачи; затем Алгоритм 2 строит топологию, способную одновременно поддерживать энергоэффективную широковещательную рассылку.




Строка 70: Строка 76:
'''Алгоритм 1. Построение <math>S \Theta\ GG</math>: энергоэффективная одноадресная топология'''
'''Алгоритм 1. Построение <math>S \Theta\ GG</math>: энергоэффективная одноадресная топология'''


1. Вначале каждый узел самостоятельно строит локальный граф Гэбриэла (GG). Алгоритм построения графа Гэбриэла хорошо известен; одну из возможных реализаций можно найти в [13]. Вначале все узлы помечают себя меткой WHITE, т.е. «необработанные».
1. Вначале каждый узел самостоятельно строит локальный [[граф Гэбриэля]] (Gabriel graph, GG). Алгоритм построения графа Гэбриэля хорошо известен; одну из возможных реализаций можно найти в [13]. Вначале все узлы помечают себя меткой WHITE, т.е. «необработанные».


2. Если WHITE-узел u имеет наименьший идентификатор среди всех WHITE-соседей в N(u), он использует следующую стратегию выбора соседей:
2. Если WHITE-узел u имеет наименьший идентификатор среди всех WHITE-соседей в N(u), он использует следующую стратегию выбора соседей:
Строка 97: Строка 103:


== Применение ==
== Применение ==
Локализованное управление топологией в децентрализованных беспроводных сетях является важнейшим механизмом поддержки связности сети и организации обратной связи для протоколов обмена данными. Большая часть сетевого трафика приходится на одноадресные передачи. Основными задачами являются экономия энергозатрат и повышение производительности работы сети за счет поддержки энергоэффективной типологии локальным образом. Данный алгоритм решает эти задачи за счет выбора относительно малого уровня мощности передачи и числа соседей по коммуникации для каждой вершины, что позволяет снизить уровень интерференции. Протоколы маршрутизации MANET нередко требуют применения широковещательной передачи. К примеру, такие одноадресные протоколы маршрутизации, как [[динамическая маршрутизация от источника]] (Dynamic Source Routing, DSR), [[дистанционно-векторный алгоритм маршрутизации по запросу]] (Ad Hoc On Demand Distance Vector, AODV), [[протокол зонной маршрутизации]] (Zone Routing Protocol, ZRP) и [[протокол географической маршрутизации]] (Location Aided Routing, LAR), используют для прокладки маршрутов широковещательную передачу или какие-либо ее разновидности. Крайне важно использовать в таких сетях энергоэффективные алгоритмы широковещательной передачи, поскольку беспроводные устройства часто работают только от аккумуляторов.
Локализованное управление топологией в децентрализованных беспроводных сетях является важнейшим механизмом поддержки связности сети и организации обратной связи для протоколов обмена данными. Большая часть сетевого трафика приходится на одноадресные передачи. Основными задачами являются экономия энергозатрат и повышение производительности работы сети за счет поддержки энергоэффективной типологии локальным образом. Данный алгоритм решает эти задачи за счет выбора относительно малого уровня мощности передачи и числа соседей по коммуникации для каждой вершины, что позволяет снизить уровень интерференции. Протоколы маршрутизации MANET нередко требуют применения широковещательной рассылки. К примеру, такие одноадресные протоколы маршрутизации, как [[динамическая маршрутизация от источника]] (Dynamic Source Routing, DSR), [[дистанционно-векторный алгоритм маршрутизации по запросу]] (Ad Hoc On Demand Distance Vector, AODV), [[протокол зонной маршрутизации]] (Zone Routing Protocol, ZRP) и [[протокол географической маршрутизации]] (Location Aided Routing, LAR), используют для прокладки маршрутов широковещательную рассылку или какие-либо ее разновидности. Крайне важно использовать в таких сетях энергоэффективные алгоритмы широковещательной рассылки, поскольку беспроводные устройства часто работают только от аккумуляторов.


== См. также ==
== См. также ==
Строка 104: Строка 110:
* ''[[Геометрические остовы]]
* ''[[Геометрические остовы]]
* ''[[Планарные геометрические остовы]]
* ''[[Планарные геометрические остовы]]
* ''[[Остовы разреженных графов]]
* ''[[Разреженные остовы графов]]


== Литература ==
== Литература ==
Строка 141: Строка 147:


17. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput. 11, 721-736(1982)
17. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput. 11, 721-736(1982)
[[Категория: Совместное определение связанных терминов]]