1294
правки
Irina (обсуждение | вклад) |
KVN (обсуждение | вклад) |
||
(не показано 9 промежуточных версий 1 участника) | |||
Строка 10: | Строка 10: | ||
Карп [11] показал, что эта задача является NP-полной. Лунд и Янакаккис [12] доказали, что существует некоторая константа <math>\epsilon > 0 \;</math>, такая, что аппроксимация версии оптимизации UFVS с коэффициентом <math>1 + \epsilon \;</math> является NP-полной задачей. Лучший известный на данный момент алгоритм | Карп [11] показал, что эта задача является NP-полной. Лунд и Янакаккис [12] доказали, что существует некоторая константа <math>\epsilon > 0 \;</math>, такая, что аппроксимация версии оптимизации UFVS с коэффициентом <math>1 + \epsilon \;</math> является NP-полной задачей. Лучший известный на данный момент аппроксимационный алгоритм с полиномиальным временем выполнения имеет коэффициент 2 [1, 4]. Беккер и др. [3] предложили простой и элегантный рандомизированный алгоритм, решающий задачу UFVS за время <math>O(c \cdot 4^k \cdot kn) \;</math> на графе с n вершинами и m ребрами при помощи нахождения разрывающего множества вершин размера k с вероятностью не менее <math>1 - (1 - 4^{-k})^{c4^k} \;</math> для произвольной константы c. Точный алгоритм решения задачи UFVS с временем выполнения <math>O(1,7548^n) \;</math> недавно разработали Фомин и др. [9]. В контексте параметризованной сложности [8, 13] Бодлендер [5], а также Дауни и Феллоуз [7] первыми показали, что задача разрешима при помощи алгоритмов с фиксированными параметрами, т.е. что комбинаторный взрыв при ее решении может быть ограничен параметром k. Наилучший известный на данный момент алгоритм решения задачи UFVS с фиксированным параметром выполняется за время <math>O(c^k \cdot mn) \;</math> для константы c [6, 10] (в [6] представлен анализ наилучшего времени выполнения, имеющего место при значении константы c = 10,567). Этот алгоритм будет рассмотрен далее. | ||
== Основные результаты == | == Основные результаты == | ||
Строка 16: | Строка 16: | ||
Подпрограмма сжатия | Подпрограмма сжатия, представленная в [6, 10], работает следующим образом: | ||
1 Рассмотрим все возможные разбиения (X, Y), имеющие размер (k + 1), для разрывающего множества вершин F с <math>|X| \le k \;</math> в предположении, что множество X полностью содержится в новом разрывающем множестве F' размера k и что <math>Y \cap F' = \empty \;</math>. | 1 Рассмотрим все возможные разбиения (X, Y), имеющие размер (k + 1), для разрывающего множества вершин F с <math>|X| \le k \;</math> в предположении, что множество X полностью содержится в новом разрывающем множестве F' размера k и что <math>Y \cap F' = \empty \;</math>. | ||
2 Для каждого разбиения (X, Y), в случае, если вершины из Y порождают циклы, ответ для этого разбиения будет отрицательным; в противном случае следует удалить вершины из X. После | 2 Для каждого разбиения (X, Y), в случае, если вершины из Y порождают циклы, ответ для этого разбиения будет отрицательным; в противном случае следует удалить вершины из X. После этого необходимо применить следующие правила редукции данных к оставшемуся графу: | ||
• Удалить вершины степени 1. | • Удалить вершины степени 1. | ||
• Если существует вершина степени 2 с двумя соседями <math>v_1 \;</math> и <math>v_2 \;</math>, где <math>v_1 \notin Y \;</math> или <math>v_2 \notin Y \;</math>, то удалить v и соединить <math>v_1 \;</math> и <math>v_2 \;</math>. Если при этом создается второе параллельное ребро между <math>v_1 \;</math> и <math>v_2 \;</math>, удалить вершину <math>v_1 \;</math> плюс <math>v_2 \;</math>, не принадлежащую к Y, и добавить ее к любому разрывающему множеству вершин для сокращенного экземпляра | • Если существует вершина степени 2 с двумя соседями <math>v_1 \;</math> и <math>v_2 \;</math>, где <math>v_1 \notin Y \;</math> или <math>v_2 \notin Y \;</math>, то удалить v и соединить <math>v_1 \;</math> и <math>v_2 \;</math>. Если при этом создается второе параллельное ребро между <math>v_1 \;</math> и <math>v_2 \;</math>, удалить вершину <math>v_1 \;</math> плюс <math>v_2 \;</math>, не принадлежащую к Y, и добавить ее к любому разрывающему множеству вершин для сокращенного экземпляра. | ||
Наконец, исчерпывающим образом для каждого множества вершин S сокращенного графа, размер которого не превышает k — |X|, проверим, можно ли добавить S к X для образования разрывающего множества вершин входного графа. Если такое множество вершин существует, вывести его вместе с X в качестве нового разрывающего множества вершин размера k. | |||
Корректность подпрограммы сжатия следует из ее прямолинейной природы и из корректности двух правил редукции данных, доказать которую несложно. Важнее показать, что время выполнения подпрограммы сжатия составляет <math>O(c^k \cdot m) \;</math>: существует <math>2^k + 1 \;</math> разбиений множества F на вышеупомянутые подмножества (X, Y); можно показать, что для каждого разбиения сокращенный граф после выполнения правил редукции данных имеет не более <math>d \cdot k \;</math> вершин для константного значения d; в противном случае для этого разбиения не существует разрывающего множества вершин размера k. Таким образом, время выполнения составляет <math>O(c^k \cdot m) \;</math>. Более детальное доказательство границы размера <math>d \cdot k \;</math> см. в [6, 10]. | |||
Для входного графа G с множеством вершин <math>\{ v_1, ..., v_n \} \;</math> алгоритм с фиксированным параметром из работ [6, 10] решает задачу UFVS путем итеративного рассмотрения подграфов <math>G_i := G[ \{v_1, ..., v_i \} ] \;</math>. Для i = 1 оптимальное разрывающее множество вершин является пустым. Предположим, что в случае i > 1 оптимальное разрывающее множество вершин | |||
Для входного графа G с множеством вершин <math>\{ v_1, ..., v_n \} \;</math> алгоритм с фиксированным параметром из работ [6, 10] решает задачу UFVS путем итеративного рассмотрения подграфов <math>G_i := G[ \{v_1, ..., v_i \} ] \;</math>. Для i = 1 оптимальное разрывающее множество вершин является пустым. Предположим, что в случае i > 1 оптимальное разрывающее множество вершин <math>X_i \;</math> для <math>G_i \;</math> известно. Очевидно, что <math>X_i \cup \{ v_{i+1} \} \;</math> является искомым множеством для <math>G_{i+1} \;</math>. Используя подпрограмму сжатия, алгоритм за время <math>O(c^k \cdot m) \;</math> может определить, является ли <math>X_i \cup \{ v_{i+1} \} \;</math> оптимальным разрывающим множеством вершин для <math>G_{i+1} \;</math>, и в случае, если оно таковым не является, вычислить оптимальное разрывающее множество вершин для <math>G_{i+1} \;</math>. Таким образом, в случае i = n мы получаем оптимальное разрывающее множество вершин для графа G за время <math>O(c^k \cdot mn) \;</math>. | |||
Строка 36: | Строка 38: | ||
== Применение == | == Применение == | ||
Задача нахождения разрывающего множества вершин на неориентированном графе имеет огромное значение для комбинаторной оптимизации. Типичным примером может служить разработка комбинаторных схем [ ]. Приложения в области задач на удовлетворение ограничений и баейсовского вывода см. в работе Бар-Йехуды и др. [2]. | Задача нахождения разрывающего множества вершин на неориентированном графе имеет огромное значение для комбинаторной оптимизации. Типичным примером может служить разработка комбинаторных схем [1]. Приложения в области задач на удовлетворение ограничений и баейсовского вывода см. в работе Бар-Йехуды и др. [2]. | ||
== Открытые вопросы == | == Открытые вопросы == | ||
Строка 69: | Строка 71: | ||
14. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299-301 (2004) | 14. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299-301 (2004) | ||
[[Категория: Совместное определение связанных терминов]] |