Аноним

Супердерево максимального соответствия: различия между версиями

Материал из WEGA
 
(не показано 7 промежуточных версий 1 участника)
Строка 44: Строка 44:




Хотя задача MASP является NP-полной, существует алгоритм аппроксимации для ее приближенного решения.
Хотя задача MASP является NP-полной, существует аппроксимационный алгоритм для ее приближенного решения.




Теорема 6 ([8]). Задача MASP может быть приближенно решена с множителем lognn за время O(n2) min {O(k (log log n)2); O (k + log n log log n)}. MASP, ограниченная корневыми триплетами, может быть приближенно решена с множителем lognn за время O(k + n2 log n).
'''Теорема 6 ([8])'''. Задача MASP может быть приближенно решена с множителем <math>\frac{n}{log \; n}</math> за время <math>O(n^2) \cdot min \{ O(k \cdot (log \; log \; n)^2), O(k + log \; n \cdot log \; log \; n) \} </math>. MASP, ограниченная корневыми триплетами, может быть приближенно решена с множителем <math>\frac{n}{log \; n}</math> за время <math>O(k + n^2 log^2 \; n)</math>.




Также существуют алгоритмы вычисления MASP с фиксированными параметрами и полиномиальным временем решения. Случай с множеством k бинарных деревьев T с n различных меток листьев рассматривался множеством исследователей. Дженссон и коллеги [ ] первыми предложили алгоритм вычисления MAST на T с временем исполнения O(k(2n2)3k. Недавно Гийемо и Берри [5] улучшили это время до O((8n)k); Хоанг и Сунг [ ] снизили его до O((6n)), что показано в теореме 7.
Также существуют алгоритмы вычисления MASP с фиксированными параметрами и полиномиальным временем решения. Случай с множеством k бинарных деревьев T с n различных меток листьев рассматривался множеством исследователей. Дженссон и коллеги [8] первыми предложили алгоритм вычисления MAST на T с временем выполнения <math>O(k(2n^2)^{3k^2}) \;</math>. Недавно Гийемо и Берри [5] улучшили это время до <math>O((8n)^k) \;</math>; Хоанг и Сунг [7] снизили его до <math>O((6n)^k) \;</math>, что показано в теореме 7.




Теорема 7 ([7]). Пусть дано множество k бинарных деревьев T с n различных меток листьев; их супердерево максимального соответствия может быть найдено за время O((6n)k).
'''Теорема 7 ([7])'''. Пусть дано множество k бинарных деревьев T с n различных меток листьев; их супердерево максимального соответствия может быть найдено за время <math>O((6n)^k) \;</math>.
Для случая, когда множество k бинарных деревьев T имеют степень D и n различных меток листьев, Хоанг и Сунг [7] предложили следующее решение для нахождения MASP с фиксированными параметрами и полиномиальным временем исполнения.


Для случая, когда множество k бинарных деревьев T имеют степень D и n различных меток листьев, Хоанг и Сунг [7] предложили следующее решение для нахождения MASP с фиксированными параметрами и полиномиальным временем выполнения.


Теорема 8 ([ ]). Пусть дано множество k бинарных деревьев T степени D с n различных меток листьев; их супердерево максимального соответствия может быть найдено за время O((kD)kD+3(2n)k).
 
'''Теорема 8 ([7])'''. Пусть дано множество k бинарных деревьев T степени D с n различных меток листьев; их супердерево максимального соответствия может быть найдено за время <math>O((kD)^{kD+3} (2n)^k) \;</math>.


== Применение ==
== Применение ==
Строка 70: Строка 71:




Задача 2. Пусть D = f T1 ; T2; : ; Tk g – множество корневых неупорядоченных деревьев, в котором каждое дерево Ti имеет уникальные метки листьев, при этом множества меток листьев A(Tj) могут перекрываться. Задача нахождения супердерева максимальной совместимости (MCSP) заключается в построении дерева Q с уникальными метками листьев, с множеством меток листьев A(Q) С ST2D A(Tj), таким, что \A(Q)\ максимально и для каждого Ti 2 D топологическое ограничение поддерева Q0 дерева Q согласно A(Tj) уточняет топологическое ограничение Ti0 согласно Ti; иначе говоря, Ti0 может быть получено путем коллапсирования определенных ребер Qi0.
'''Задача 2'''. Пусть <math>D = \{ T_1, T_2, ..., T_k \} \;</math> – множество корневых неупорядоченных деревьев, в котором каждое дерево <math>T_i \;</math> имеет уникальные метки листьев, при этом множества меток листьев <math>\Lambda(T_i) \;</math> могут перекрываться. Задача нахождения супердерева максимальной совместимости (MCSP) заключается в построении дерева <math>Q \;</math> с уникальными метками листьев, с множеством меток листьев <math>\Lambda(Q) \subseteq \bigcup_{T_i \in D} \Lambda(T_i) \;</math>, таким, что <math>| \Lambda(Q) | \;</math> максимально и для каждого <math>T_i \in D \;</math> топологическое ограничение поддерева <math>Q_i' \;</math> дерева <math>Q \;</math> согласно <math>\Lambda(T_i) \;</math> уточняет топологическое ограничение <math>T'_i \;</math> согласно <math>T_i \;</math>; иначе говоря, <math>T'_i \;</math> может быть получено путем коллапсирования определенных ребер <math>Q'_i \;</math>.
 


== Открытые вопросы ==
== Открытые вопросы ==
Строка 79: Строка 79:


== См. также ==
== См. также ==
► Поддерево максимального соответствия (для двух бинарных деревьев)
► Поддерево максимального соответствия (для трех или более деревьев)
► Дерево максимальной совместимости


* ''[[Поддерево максимального соответствия|Поддерево максимального соответствия (для двух бинарных деревьев)]]
* ''[[Поддерево максимального соответствия (для трех или более деревьев)]]
* ''[[Дерево максимальной совместимости]]


== Литература ==
== Литература ==
Строка 106: Строка 106:


11. Sanderson, M.J., Purvis, A., Henze, C.: Phylogenetic supertrees: assembling the trees of life. TRENDS in Ecology & Evolution, 13(3),105-109(1998)
11. Sanderson, M.J., Purvis, A., Henze, C.: Phylogenetic supertrees: assembling the trees of life. TRENDS in Ecology & Evolution, 13(3),105-109(1998)
[[Категория: Совместное определение связанных терминов]]