Аноним

Ширина ленты графа: различия между версиями

Материал из WEGA
м
нет описания правки
мНет описания правки
мНет описания правки
Строка 1: Строка 1:
== Ключевые слова и синонимы ==
== Ключевые слова и синонимы ==
[[Алгоритмы аппроксимации]]; [[метрические вложения]]
[[Аппроксимационные алгоритмы]]; [[метрические вложения]]


== Постановка задачи ==
== Постановка задачи ==
Строка 19: Строка 19:




'''Теорема 1. Существует эффективный алгоритм, который для графа <math>G = (V, E) \; </math> устанавливает линейный порядок <math>\pi : V \rightarrow \{ 1, 2, ..., n \}</math>, для которого <math>bw_{\pi } (G) \le O \Big( (log \; n)^3 \sqrt{log \; n \; log \; log \; n} \Big) \cdot D(G)</math>. В частности, имеется полилогарифмический относительно n /poly(log n)/ алгоритм аппроксимации для решения задачи нахождения ширины ленты в графах общего вида.'''
'''Теорема 1. Существует эффективный алгоритм, который для графа <math>G = (V, E) \; </math> устанавливает линейный порядок <math>\pi : V \rightarrow \{ 1, 2, ..., n \}</math>, для которого <math>bw_{\pi } (G) \le O \Big( (log \; n)^3 \sqrt{log \; n \; log \; log \; n} \Big) \cdot D(G)</math>. В частности, имеется полилогарифмический относительно n /poly(log n)/ аппроксимационный алгоритм для нахождения ширины ленты в графах общего вида.'''




Строка 50: Строка 50:
'''Гипотеза: для любого графа G = (V, E) с n вершинами имеем <math>bw(G) = O(log \; n) \cdot D(G) \;</math>.'''
'''Гипотеза: для любого графа G = (V, E) с n вершинами имеем <math>bw(G) = O(log \; n) \cdot D(G) \;</math>.'''


Эта интересная гипотеза не доказана даже для специального случая, когда G является деревом (в [ ] приведены наилучшие результаты для деревьев). Наилучшая известная граница в общем случае, основанная на работах [7, 10], имеет вид <math>bw(G) = O(log \; n)^{3.5} \cdot D(G)</math>. Известно, что приведенная в гипотезе верхняя граница является наилучшей возможной, даже для деревьев [4]. Можно ожидать, что подобные комбинаторные исследования позволят усовершенствовать алгоритмы аппроксимации.
Эта интересная гипотеза не доказана даже для специального случая, когда G является деревом (в [ ] приведены наилучшие результаты для деревьев). Наилучшая известная граница в общем случае, основанная на работах [7, 10], имеет вид <math>bw(G) = O(log \; n)^{3.5} \cdot D(G)</math>. Известно, что приведенная в гипотезе верхняя граница является наилучшей возможной, даже для деревьев [4]. Можно ожидать, что подобные комбинаторные исследования позволят усовершенствовать аппроксимационные алгоритмы.




Однако наилучшие алгоритмы аппроксимации, достигающие показателя <math>O((log \; n)^3 (log \; log \; n)^{1/4)}</math>, не основываются на границе локальной плотности. Они скорее представляют собой гибрид подходов полуопределенного программирования [1, 5] с учетом предложений Фейге и методов вложения с учетом объема, изложенных в [12, 16]. Определение аппроксимируемости задачи нахождения ширины ленты графа является значимой открытой проблемой; для ее решения требуется улучшение как верхней, так и нижней границ.
Однако наилучшие аппроксимационные алгоритмы, достигающие показателя <math>O((log \; n)^3 (log \; log \; n)^{1/4)}</math>, не основываются на границе локальной плотности. Они скорее представляют собой гибрид подходов полуопределенного программирования [1, 5] с учетом предложений Фейге и методов вложения с учетом объема, изложенных в [12, 16]. Определение аппроксимируемости задачи нахождения ширины ленты графа является значимой открытой проблемой; для ее решения требуется улучшение как верхней, так и нижней границ.


== Литература ==
== Литература ==
4551

правка