Ориентированный граф: различия между версиями
Перейти к навигации
Перейти к поиску
KEV (обсуждение | вклад) (Создана новая страница размером '''Ориентированный граф''' (''Directed graph'') - пара множеств <math>(V,A)</math>, гд...) |
KVN (обсуждение | вклад) Нет описания правки |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 1: | Строка 1: | ||
'''Ориентированный граф''' ([[Directed graph | '''Ориентированный граф''' (''[[Directed graph]]'') — пара множеств <math>(V,A),</math> где <math>\,V</math> — конечное множество [[вершина|вершин]], <math>A</math> — множество [[дуга|дуг]] (''ориентированных'' [[ребро|ребер]]), <math>A \subseteq V^{2}</math>. Если существует [[дуга]] <math>(v,w)</math>. то вершина <math>w</math> называется ''(непосредственным) преемником'' или ''входящим соседом'' вершины <math>v</math>, а вершина <math>v</math> — ''(непосредственным) предшественником'' или ''исходящим соседом'' вершины <math>w</math>. | ||
==См. также== | ==См. также== | ||
[[Ациклический граф | * ''[[Ациклический граф]]'' (''[[орграф]]''), | ||
[[Несвязный орграф | * ''[[Бесконтурный орграф]]'', | ||
[[Симметричный орграф | * ''[[Г-Ограниченный граф|<math>\Gamma</math>-ограниченный граф]]'', | ||
* ''[[Вершинно-симметрический граф]]'', | |||
* ''[[Гамильтонов орграф]]'', | |||
* ''[[Индифферентный орграф]]'', | |||
* ''[[Несвязный орграф]]'', | |||
* ''[[Обратный орграф]]'', | |||
* ''[[Односторонне связный орграф]]'', | |||
* ''[[Односторонний орграф]]'', | |||
* ''[[Полный орграф]]'', | |||
* ''[[Примитивный орграф]]'', | |||
* ''[[Реберный орграф]]'', | |||
* ''[[Самообратный орграф]]'', | |||
* ''[[Слабо связный орграф]]'', | |||
* ''[[Сильно связный орграф]]'', | |||
* ''[[Симметричный орграф]]'', | |||
* ''[[Строго односторонний орграф]]'', | |||
* ''[[Строго слабый орграф]]'', | |||
* ''[[Транзитивный орграф]]'', | |||
* ''[[Турнир]]'', | |||
* ''[[Управляющий граф]]'', | |||
* ''[[Функциональный орграф]]'', | |||
* ''[[Эйлеров орграф]]''. | |||
==Литература== | ==Литература== | ||
[ | * Лекции по теории графов / В.А.Емеличев, О.И.Мельников, В.И.Сарванов, Р.И.Тышкевич. — М.: Наука, 1990. | ||
* Касьянов В. Н., Евстигнеев В. А. Графы в программировании: обработка, визуализация и применение. – СПб.: БХВ-Петербург, 2003. | |||
[[Категория:Ориентированные графы]] |
Текущая версия от 21:26, 8 октября 2019
Ориентированный граф (Directed graph) — пара множеств [math]\displaystyle{ (V,A), }[/math] где [math]\displaystyle{ \,V }[/math] — конечное множество вершин, [math]\displaystyle{ A }[/math] — множество дуг (ориентированных ребер), [math]\displaystyle{ A \subseteq V^{2} }[/math]. Если существует дуга [math]\displaystyle{ (v,w) }[/math]. то вершина [math]\displaystyle{ w }[/math] называется (непосредственным) преемником или входящим соседом вершины [math]\displaystyle{ v }[/math], а вершина [math]\displaystyle{ v }[/math] — (непосредственным) предшественником или исходящим соседом вершины [math]\displaystyle{ w }[/math].
См. также
- Ациклический граф (орграф),
- Бесконтурный орграф,
- [math]\displaystyle{ \Gamma }[/math]-ограниченный граф,
- Вершинно-симметрический граф,
- Гамильтонов орграф,
- Индифферентный орграф,
- Несвязный орграф,
- Обратный орграф,
- Односторонне связный орграф,
- Односторонний орграф,
- Полный орграф,
- Примитивный орграф,
- Реберный орграф,
- Самообратный орграф,
- Слабо связный орграф,
- Сильно связный орграф,
- Симметричный орграф,
- Строго односторонний орграф,
- Строго слабый орграф,
- Транзитивный орграф,
- Турнир,
- Управляющий граф,
- Функциональный орграф,
- Эйлеров орграф.
Литература
- Лекции по теории графов / В.А.Емеличев, О.И.Мельников, В.И.Сарванов, Р.И.Тышкевич. — М.: Наука, 1990.
- Касьянов В. Н., Евстигнеев В. А. Графы в программировании: обработка, визуализация и применение. – СПб.: БХВ-Петербург, 2003.