Cactus: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Новая страница: «'''Cactus''' --- кактус, дерево Хусими. A graph <math>G</math> is a '''сactus''' if every its edge is a part of at most one cycle in <math>G</ma…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Cactus''' --- кактус, дерево Хусими.  
'''Cactus''' — ''[[кактус]], [[дерево Хусими]].''


A graph <math>G</math> is a '''сactus''' if every its edge is a part of at most one cycle in <math>G</math>.
A [[graph, undirected graph, nonoriented graph|graph]] <math>\,G</math> is a '''сactus''' if every its [[edge]] is a part of at most one [[cycle]] in <math>\,G</math>.
Cactus graphs are ''outerplanar'' since they cannot contain <math>K_{4}</math>
Cactus graphs are ''[[outerplanar graph|outerplanar]]'' since they cannot contain <math>\,K_{4}</math>
or <math>K_{2,3}</math> as a ''minor''. Cactus graphs have treewidth <math>\leq 2</math>.
or <math>\,K_{2,3}</math> as a ''[[minor of a graph|minor]]''. Cactus graphs have [[treewidth of a graph|treewidth]] <math>\leq 2</math>.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 10:44, 24 октября 2018

Cactusкактус, дерево Хусими.

A graph [math]\displaystyle{ \,G }[/math] is a сactus if every its edge is a part of at most one cycle in [math]\displaystyle{ \,G }[/math]. Cactus graphs are outerplanar since they cannot contain [math]\displaystyle{ \,K_{4} }[/math] or [math]\displaystyle{ \,K_{2,3} }[/math] as a minor. Cactus graphs have treewidth [math]\displaystyle{ \leq 2 }[/math].

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.