Chain graph: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Новая страница: «'''Chain graph''' --- цепной граф. A ''bipartite graph'' <math>G = (P,Q,E)</math> is called a '''chain graph''' if there is an ordering <math>\pi</math> …»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Chain graph''' --- цепной граф.  
'''Chain graph''' — [[цепной граф]].  


A ''bipartite graph'' <math>G = (P,Q,E)</math> is called a '''chain graph''' if there
A ''[[bipartite graph]]'' <math>\,G = (P,Q,E)</math> is called a '''chain graph''' if there
is an ordering <math>\pi</math> of the vertices in <math>P</math>, <math>\pi: \; \{1, \ldots,
is an ordering <math>\,\pi</math> of the [[vertex|vertices]] in <math>\,P</math>, <math>\pi: \; \{1, \ldots,
|P|\} \rightarrow P</math>, such that
|P|\} \rightarrow P</math>, such that


Строка 8: Строка 8:
N(\pi(|P|)).</math>
N(\pi(|P|)).</math>


Here <math>N(v)</math> is a ''neighborhood''of <math>v</math>. It is known that <math>G</math> is a
Here <math>\,N(v)</math> is a ''neighborhood'' of <math>\,v</math>. It is known that <math>\,G</math> is a
chain graph iff it does not contain an independent pair of edges (an
chain graph iff it does not contain an independent pair of [[edge|edges]] (an
induced <math>2K_{2}</math>).
induced <math>\,2K_{2}</math>).
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 10:44, 24 октября 2018

Chain graphцепной граф.

A bipartite graph [math]\displaystyle{ \,G = (P,Q,E) }[/math] is called a chain graph if there is an ordering [math]\displaystyle{ \,\pi }[/math] of the vertices in [math]\displaystyle{ \,P }[/math], [math]\displaystyle{ \pi: \; \{1, \ldots, |P|\} \rightarrow P }[/math], such that

[math]\displaystyle{ N(\pi(1)) \subseteq N(\pi(2)) \subseteq \cdots \subseteq N(\pi(|P|)). }[/math]

Here [math]\displaystyle{ \,N(v) }[/math] is a neighborhood of [math]\displaystyle{ \,v }[/math]. It is known that [math]\displaystyle{ \,G }[/math] is a chain graph iff it does not contain an independent pair of edges (an induced [math]\displaystyle{ \,2K_{2} }[/math]).

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.