Amallamorphic graphs: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
(Создана новая страница размером '''Amallamorphic graphs''' --- амалламорфные графы. Let <math>M</math> be a multigraph. Let <math>G(M)</math> denote a...)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Amallamorphic graphs''' --- амалламорфные графы.  
'''Amallamorphic graphs''' — ''[[амалламорфные графы]].''


Let <math>M</math> be a multigraph. Let <math>G(M)</math> denote a graph
Let <math>M</math> be a [[multigraph]]. Let <math>G(M)</math> denote a [[graph, undirected graph, nonoriented graph|graph]]
obtained from <math>M</math> by replacing every multiple edge by a simple edge.
obtained from <math>M</math> by replacing every [[multiple edges|multiple edge]] by a [[simple edge]].
Two multigraphs <math>M_{1}</math> and <math>M_{2}</math> are '''amallamorphic''' if
Two multigraphs <math>M_{1}</math> and <math>M_{2}</math> are '''amallamorphic''' if
<math>G(M_{1})</math> is isomorphic to <math>G(M_{2})</math>.
<math>G(M_{1})</math> is [[isomorphic graphs|isomorphic]] to <math>G(M_{2})</math>.

Текущая версия от 16:30, 23 октября 2018

Amallamorphic graphsамалламорфные графы.

Let [math]\displaystyle{ M }[/math] be a multigraph. Let [math]\displaystyle{ G(M) }[/math] denote a graph obtained from [math]\displaystyle{ M }[/math] by replacing every multiple edge by a simple edge. Two multigraphs [math]\displaystyle{ M_{1} }[/math] and [math]\displaystyle{ M_{2} }[/math] are amallamorphic if [math]\displaystyle{ G(M_{1}) }[/math] is isomorphic to [math]\displaystyle{ G(M_{2}) }[/math].