4551
правка
Irina (обсуждение | вклад) м (→Применение) |
Irina (обсуждение | вклад) |
||
Строка 66: | Строка 66: | ||
Ни одно из решений задач 1 и 2, приведенных в разделе «Основные результаты», не является оптимальным. Следующие задачи остаются открытыми: | Ни одно из решений задач 1 и 2, приведенных в разделе «Основные результаты», не является оптимальным. Следующие задачи остаются открытыми: | ||
1. Определить наименьшее вещественное число t, при котором триангуляция Делоне любого конечного множества точек на плоскости является t-остовом. Распространено мнение, что t = | 1. Определить наименьшее вещественное число t, при котором триангуляция Делоне любого конечного множества точек на плоскости является t-остовом. Распространено мнение, что <math>t = \pi / 2 \;</math>. Согласно теореме 1, <math>t \le 4 \pi \sqrt{3} / 9</math>. | ||
2. Определить наименьшее вещественное число t, при котором для любого конечного множества точек на плоскости существует плоский t-остов. Согласно теореме 2, t < | 2. Определить наименьшее вещественное число t, при котором для любого конечного множества точек на плоскости существует плоский t-остов. Согласно теореме 2, <math>t \le 2 \;</math>. Если взять частный случай S в виде множества из четырех вершин квадрата, получается, что t должно быть не меньше <math>\sqrt{2} \;</math>. | ||
3. Определить наименьшее целое число D, при котором триангуляция Делоне любого конечного множества точек на плоскости содержит t-остов (для некоторого константного значения t), максимальная степень которого не превышает D. Согласно теореме 4, D < | 3. Определить наименьшее целое число D, при котором триангуляция Делоне любого конечного множества точек на плоскости содержит t-остов (для некоторого константного значения t), максимальная степень которого не превышает D. Согласно теореме 4, <math>D \le 17 \;</math>. Из результатов, полученных Ароновым и др. [1], следует, что значение D должно быть не меньше 3. | ||
4. Определить наименьшее вещественное число D, при котором для любого конечного множества точек на плоскости существует плоский t-остов (для некоторого константного значения t), максимальная степень которого не превышает D. Согласно теореме 4 и | 4. Определить наименьшее вещественное число D, при котором для любого конечного множества точек на плоскости существует плоский t-остов (для некоторого константного значения t), максимальная степень которого не превышает D. Согласно теореме 4 и результатам из работы [1], <math>3 \le D \le 17 \;</math>. | ||
== См. также == | == См. также == |
правка