Алгоритмы наилучших ответов для эгоистичной маршрутизации: различия между версиями

Материал из WEGA
Перейти к навигации Перейти к поиску
Строка 25: Строка 25:
'''Потоки и общий наилучший ответ'''
'''Потоки и общий наилучший ответ'''


(Допустимый) поток на множестве P путей s — t по графу G задается функцией f: P !< 8t>0, такой, что n p2P
(Допустимый) поток на множестве P путей s — t по графу G задается функцией <math>f: P \to \mathfrak{R}_{ \ge 0} \;</math>, такой, что <math>\sum_{p \in P} f_p = \sum_{i = 1}^n w_i \;</math> .




Игра о загруженности сети одного товара ((wi)i2N; G; (de)e2E) обладает свойством общего наилучшего ответа, если для каждого изначального потока f (не обязательно допустимого) все пользователи имеют один и тот же набор наилучших ответов относительно £. Иначе говоря, если путь p является наилучшим ответом относительно f для некоторого пользователя, то для всех пользователей j и всех путей p0 выполняется (fe e2p eS.pl
Игра о загруженности сети одного товара <math>((w_i)_{i \in N}, G, (d_e)_{e \in E}) \;</math> обладает свойством общего наилучшего ответа, если для каждого изначального потока f (не обязательно допустимого) все пользователи имеют один и тот же набор наилучших ответов относительно £. Иначе говоря, если путь p является наилучшим ответом относительно f для некоторого пользователя, то для всех пользователей j и всех путей p0 выполняется (fe e2p eS.pl





Версия от 19:15, 30 ноября 2016

Ключевые слова и синонимы

Атомарные эгоистичные потоки

Постановка задачи

Пусть дана ситуация, в которой n эгоистичных пользователей конкурируют за маршрутизацию своих загрузок в сети. Сеть представляет собой ориентированный s-t-граф с единственной вершиной-источником s и единственной вершиной-приемником t. Пользователи последовательным образом упорядочены. Предполагается, что каждый пользователь делает свой ход после того, за которым он идет согласно порядку, а желаемый конечный результат представляет собой чистое равновесие Нэша. Также предполагается, что когда пользователь делает ход (т.е. выбирает путь s-t для маршрутизации своей загрузки), этот ход является наилучшим ответом (т.е. имеет минимальную задержку) с учетом путей и пользователей, в данный момент находящихся в сети. Задача заключается в поиске класса ориентированных графов, для которых существует упорядочение, такое, что соответствующая последовательность наилучших ответов приводит к чистому равновесию Нэша.

Модель

Игра о загруженности сети представляет собой кортеж [math]\displaystyle{ ((w_i)_{i \in N}, G, (d_e)_{e \in E}) \; }[/math], где N = {1, ..., n} – множество пользователей, где пользователь [math]\displaystyle{ i \; }[/math] контролирует [math]\displaystyle{ w_i \; }[/math] единиц спроса на трафик. В невзвешенных играх о загруженности [math]\displaystyle{ w_i = 1 \; }[/math] для i = 1, ..., n. G(V, E) – ориентированный граф, представляющий сеть коммуникаций, а [math]\displaystyle{ d_e \; }[/math] – функция задержки, ассоциированная с ребром [math]\displaystyle{ e \in E \; }[/math]. Предполагается, что [math]\displaystyle{ d_e \; }[/math] являются неотрицательными и неубывающими функциями от загрузок ребра. Ребра называются идентичными, если [math]\displaystyle{ d_e (x) = x \; \forall e \in E }[/math]. Далее модель ограничивается играми о загруженности сети одного товара, в которых G имеет единственный источник s и приемник t, а множество пользовательских стратегий представляет собой множество путей s-t, обозначаемое как P. Без потери общности можно предположить, что граф G является связным и что каждая вершина G лежит на ориентированном пути s-t.


Вектор [math]\displaystyle{ P = (p_1, ..., p_n \; }[/math]), содержащий путь [math]\displaystyle{ p_i \; }[/math] модели s-t для каждого пользователя i, представляет собой профиль чистой стратегии. Пусть [math]\displaystyle{ l_e(P) = \sum_{i: e \in p_i} w_i \; }[/math] обозначает загрузку ребра e в P. Определим стоимость [math]\displaystyle{ \lambda^i_p(P) \; }[/math] для пользователя i, направляющего свой спрос по пути p в профиле P, равной [math]\displaystyle{ \lambda^i_p(P) = \sum_{e \in p \cap p_i} d_e (l_e(P)) + \sum_{e \in p \smallsetminus p_i} d_e (l(e(P)) + w_i \; }[/math]


Стоимость [math]\displaystyle{ \lambda^i_p(P) \; }[/math] пользователя i в P равна [math]\displaystyle{ \lambda^i_{p_i}(P) \; }[/math], т.е. общей задержке вдоль пути.


Профиль чистой стратегии P представляет собой чистое равновесие Нэша в том и только том случае, если ни один из пользователей не может уменьшить свою задержку за счет одностороннего отклонения, то есть выбора другого пути s—t для своей загрузки, в то время как все остальные пользователи не меняют путей.


Наилучший ответ

Пусть [math]\displaystyle{ p_i \; }[/math] – путь пользователя i, а [math]\displaystyle{ P^i = (p_1, ..., p_i) \; }[/math] – профиль чистых стратегий для пользователей 1, ..., i. Тогда наилучшим ответом пользователя i + 1 будет являться путь [math]\displaystyle{ p_{i + 1} \; }[/math], такой, что [math]\displaystyle{ p_{i + 1} = avg \; min_{p \in P^i} \Bigg\{ \sum_{e \in p} \Big(d_e \Big(l_e \Big( P^i \Big) \Big) \Big) \Bigg\} }[/math] .


Потоки и общий наилучший ответ

(Допустимый) поток на множестве P путей s — t по графу G задается функцией [math]\displaystyle{ f: P \to \mathfrak{R}_{ \ge 0} \; }[/math], такой, что [math]\displaystyle{ \sum_{p \in P} f_p = \sum_{i = 1}^n w_i \; }[/math] .


Игра о загруженности сети одного товара [math]\displaystyle{ ((w_i)_{i \in N}, G, (d_e)_{e \in E}) \; }[/math] обладает свойством общего наилучшего ответа, если для каждого изначального потока f (не обязательно допустимого) все пользователи имеют один и тот же набор наилучших ответов относительно £. Иначе говоря, если путь p является наилучшим ответом относительно f для некоторого пользователя, то для всех пользователей j и всех путей p0 выполняется (fe e2p eS.pl


Кроме того, каждый сегмент я пути наилучшего ответа p является наилучшим ответом для маршрутизации спроса любого пользователя между конечными точками n. В данном случае допускается ситуация, когда некоторые пользователи уже внесли свой вклад в изначальный поток f.


Многослойные и серийно-параллельные графы

Ориентированный (мульти)граф G(V, E) с выделенным источником s и приемником t является многослойным в том и только том случае, если все ориентированные пути s — t имеют одну и ту же длину, и каждая вершина графа лежит на некотором ориентированном пути s — t.

Мультиграф является серийно-параллельным с оконечными точками (s, t), если:

1. он представляет собой единственное ребро (s, t) либо

2. он получен из двух серийно-параллельных графов G1, G2 с оконечными точками (s1, t1) и (S2, h) путем соединения их последовательно (in series) или параллельно. При последовательном соединении t1 отождествляется с s2, так что s1 становится источником s, а t2 – приемником t. При параллельном соединении s1 = s2 = s и t1 = t2 = t.

Основные результаты

Жадный алгоритм с наилучшим ответом Greedy Best Response (GBR) Алгоритм GBR рассматривает пользователей поочередно в порядке невозрастания веса (т.е. w1 > w 2 > ... > wn). Каждый пользователь вырабатывает стратегию наилучшего для себя ответа на основе множества (уже реализованных в сети) наилучших ответов предыдущих пользователей. Пользователь не может менять свою стратегию в будущем. Алгоритм GBR достигает успеха, если итоговый профиль P представляет собой чистое равновесие Нэша.


Характеризация

В работе [ ] показано:


Теорема 1. Если граф G является (s — t)-серийно-параллельным, а игра ((WI)I2N; G; (de)e2E) обладает свойством общего наилучшего ответа, то алгоритм GBR достигает успеха.


Теорема 2. Взвешенная игра о загруженности сети одного товара в многослойной сети с идентичными ребрами обладает свойством общего наилучшего ответа для любого множества пользовательских весов.


Теорема 3. Для любой игры о загруженности сети одного товара в серийно-параллельных сетях алгоритм GBR достигает успеха, если:

1. пользователи идентичны (ifwi = 1 для всех i), а задержки ребер произвольны, но не убывают; либо

2. граф является многослойным, а его ребра идентичны (для произвольных пользовательских весов).


Теорема 4. Если сеть состоит из пакетов параллельных связей, соединенных последовательно, то чистое равновесие Нэша можно получить, применив алгоритм GBR к каждому пакету.


Теорема 5.

1. Если сеть не является серийно-параллельной, то существуют игры, на которых GBR не достигает успеха, даже в случае с 2 идентичными пользователями и идентичными ребрами.

2. Если сеть не обладает свойством наилучшего ответа (и не состоит из пакетов параллельных связей, соединенных последовательно), то существуют игры, на которых GBR не достигает успеха, даже в случае с 2-слойными серийно-параллельными графами.

Примеры подобных игр представлены в [ ].

Применение

Алгоритм GBR имеет естественное распределенное приложение на основе алгоритма выбора лидера. Каждый игрок в нем представлен процессом. Предполагается, что все процессы знают сеть и функции задержки ребер. Также предполагается наличие подсистемы передачи сообщений и базового механизма синхронизации (например, в виде логических временных меток), что обеспечивает возможность выполнения распределенного протокола в виде логических этапов.


Изначально все процессы активны. На каждом этапе они выполняют алгоритм выбора лидера и определяют процесс с наибольшим весом среди всех активных процессов. Этот процесс направляет свою загрузку по пути с наилучшим ответом, объявляет свою стратегию всем активным процессам и становится пассивным. Отметим, что каждый процесс может локально вычислять свой наилучший ответ.

Открытые вопросы

Что представляет собой класс сетей, в которых (идентичные) пользователи могут получить чистое распределение Нэша за счет k-кратного повторения последовательности наилучших ответов? Что происходит со взвешенными пользователями? В целом, как топология сети влияет на последовательности наилучших ответов? Эти открытые вопросы служат предметом текущих исследований.

См. также

Литература

1. Awerbuch, B., Azar, Y., Epstein, A.: The price of Routing Unsplittable Flows. In: Proc. ACM Symposium on Theory of Computing (STOC) 2005, pp. 57-66. ACM, New York (2005)

2. Duffin, R.J.: Topology of Series-Parallel Networks. J. Math. Anal. Appl. 10, 303-318 (1965)

3. Fotakis, D., Kontogiannis, S., Spirakis, P.: Symmetry in Network Congestion Games: Pure Equilibria and Anarchy Cost. In: Proc. of the 3rd Workshop of Approximate and On-line Algorithms (WAOA 2005). Lecture Notes in Computer Science (LNCS), vol. 3879, pp. 161-175. Springer, Berlin Heidelberg (2006)

4. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. J.Theor. Comput. Sci. 348,226-239 (2005)

5. Libman, L., Orda, A.: Atomic Resource Sharing in Noncooperative Networks. Telecommun. Syst. 17(4), 385-409 (2001)