Минимальная бисекция: различия между версиями
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) Нет описания правки |
||
Строка 42: | Строка 42: | ||
Специальный случай f$ = 2/3 часто называется задачей о реберном сепараторе (EDGE-SEPARATOR). | Специальный случай f$ = 2/3 часто называется задачей о реберном сепараторе (EDGE-SEPARATOR). | ||
В общем случае размер обеих сторон может изначально задаваться произвольным образом (они не обязательно должны быть равными); в этом случае входные условия содержат число k, а задача заключается в нахождении разреза (S, S), такого, что |S| = k. Можно также разделить граф на более чем два фрагмента равного размера – в этом случае входные данные содержат число r > 2 – или разделить граф на r фрагментов размерами k1,... , kr, где числа ki заранее заданы во входных данных; и в том и в другом случае задача заключается в минимизации количества ребер между различными фрагментами. | |||
Задача 3. Заранее заданное разбиение | |||
Дано: неориентированный граф G = (V, E) с неотрицательными весами ребер и целые числа k1, ... , kr, такие, что Pi ki = j Vj. | |||
Требуется: найти разбиение V = V 1 • • • U Vr графа G с j V i j = ki для всех i, такое, что общий вес ребер, конечные точки которых принадлежат к разным множествам Vi, насколько возможно мал. | |||
== Основные результаты == | |||
Фейге и Краутхамер [ ] предложили алгоритм аппроксимации для задачи о минимальной бисекции. Изначально они получили коэффициент апрроксимации O(log 2n), поскольку в их подходе использовался алгоритм Лейтона и Рао [14]; однако, применив вместо него алгоритм из [ ], авторы улучшили коэффициент до O(log ' и). | |||
Теорема 1. Задача о минимальной бисекции может быть приближенно решена за полиномиальное время с коэффициентом O(log1:5 n). Более конкретно, алгоритм создает для входного графа G бисекцию (S, S), стоимость которой не превышает O(log1:5 n) ■ b(G). | |||
Алгоритм можно непосредственно расширить на родственные или более общие задачи с получением сходных результатов. | |||
Теорема 2. Задача о сбалансированном разрезе (и, в частности, о реберном сепараторе может быть приближенно решена за полиномиальное время с коэффициентом O(log1:5 n). | |||
Теорема 3. Задача о заранее заданном разбиении может быть приближенно решена за время nO(r) с коэффициентом O(log1:5 n). | |||
Для всех трех вышеприведенных задач коэффициент аппроксимации можно улучшить до O(log n) для семейства графов, не включающих фиксированный минор (в частности, сюда входят некоторые планарные графы). Для простоты здесь приводятся результаты для задачи о минимальной бисекции. | |||
Теорема 4. Для графов, не включающих фиксированный граф в качестве минора (т.е. планарных графов) задачи о минимальной бисекции, /3-сбалансированном сечении и запранее заданном разбиении с фиксированным r могут быть приближенно решены за полиномиальное время с коэффициентом O(log n). | |||
Стоит отметить, что все эти результаты можно еще больше обобщить, включая в них веса вершин и вершины-полюса (пары s — t); см. главу 5 в [ 6]. | |||
== Родственные работы == |
Версия от 00:27, 31 августа 2016
Ключевые слова и синонимы
Постановка задачи
Минимальная бисекция – это базовое представление семейства задач дискретной оптимизации, имеющих дело с разбиением вершин входного графа. Обычно цель заключается в минимизации количества ребер, соединяющих два отдельных фрагмента графа, при сохранении некоторого контроля над разбиением – например,за счет ограничения количества и/или размера фрагментов. (Это описание соответствует реберному разрезу графа; в случае вершинного разреза употребляются схожие ограничение). Целью задачи о минимальной бисекции является разбиение вершин входного графа на два множества равного размера, такое, чтобы количество ребер, соединяющих эти два множества, было насколько возможно малым.
В своей основополагающей статье 1988 года Лейтон и Рао [14] разработали алгоритм аппроксимации по двум критериям для решения задачи о минимальной бисекции с логарифмическим коэффициентом. Этот алгоритм нашел множество приложений, однако вопрос поиска настоящего алгоритма аппроксимации со схожим коэффициентом оставался открытым еще десять лет. В 1999 году Файге и Краутгамер [6] предложили первый алгоритм аппроксимации солиномиальным временем выполнения, который аппроксимирует задачу с полилогарифмическим относительно размера графа коэффициентом.
(Алгоритм аппроксимации по двум критериям разбивает вершины на два множество, каждое из которых содержит не более 2/3 вершин, и его значение (т.е. количество ребер, соединяющих множества) сравнивается со значением наилучшего разбиения на множества равного размера).
Разрезы и бисекции
Пусть G = (V, E) – неориентированный граф, имеющий n = |V| вершин. Для простоты предположим, что n четно Для подмножества S вершин положим S = V n S. Разрез (S, S’), также называемый сечением, определяется как множество всех ребер, имеющих одну конечную точку в S, а другую – в S’. Говорится, что эти ребра пересекают разрез, а множества S и S’ называются сторонами разреза.
Будем предполагать, что ребра графа G имеют неотрицательные веса. (В невзвешенной версии будем предполагатьвеса всех ребер единичными). Стоимость разреза (S, S’) определяется как сумма весов всех ребер, пересекающих разрез.
Разрез (S, S’) называется бисекцией графа G, если обе его стороны имеют одинаковую мощность, а именно – |S| = |S’| = n/2. Обозначим за b(G) минимальную стоимость бисекции G.
Задача 1 (Минимальная бисекция)
Дано: неориентированный граф G с неотрицательными весами ребер.
Требуется: найти бисекцию (S, S) графа G с минимальной стоимостью.
Это определение имеет одно существенное отличие от определения классической задачи о минимальном разрезе (см, например, [ ] и ссылки в этой работе): в нем имеется ограничение на обе стороны разреза. В результате задача о минимальной бисекции (MINIMUM-BISECTION) является NP-полной [ ], тогда как задача о минимальном разрезе (MINIMUM-CUT) может быть решена за полиномиальное время.
Сбалансированные разрезы и реберные сепараторы
Вышеприведенное, довольно простое определение минимальной бисекции можно расширить несколькими способами. В частности, можно задать только верхнюю границу размера каждой стороны разреза. Для 0 < (3 < 1 разрез (S,; S) называется ^-сбалансированным, если maxfjSj; \S\} < fin. Отметим, что из последнего требования следует minfjSj; \S\} > (1 — f$)n. В этих терминах бисекция является 1/2-сбалансированным разрезом.
Задача 2 (/!-сбалансированный разрез)
Дано: неориентированный граф G с неотрицательными весами ребер.
Требуется: найти ft-сбалансированный разрез (S, S) графа G с maxfjSj; \S\} j f$ n, такой, что его стоимость насколько возможно мала.
Специальный случай f$ = 2/3 часто называется задачей о реберном сепараторе (EDGE-SEPARATOR).
В общем случае размер обеих сторон может изначально задаваться произвольным образом (они не обязательно должны быть равными); в этом случае входные условия содержат число k, а задача заключается в нахождении разреза (S, S), такого, что |S| = k. Можно также разделить граф на более чем два фрагмента равного размера – в этом случае входные данные содержат число r > 2 – или разделить граф на r фрагментов размерами k1,... , kr, где числа ki заранее заданы во входных данных; и в том и в другом случае задача заключается в минимизации количества ребер между различными фрагментами.
Задача 3. Заранее заданное разбиение
Дано: неориентированный граф G = (V, E) с неотрицательными весами ребер и целые числа k1, ... , kr, такие, что Pi ki = j Vj.
Требуется: найти разбиение V = V 1 • • • U Vr графа G с j V i j = ki для всех i, такое, что общий вес ребер, конечные точки которых принадлежат к разным множествам Vi, насколько возможно мал.
Основные результаты
Фейге и Краутхамер [ ] предложили алгоритм аппроксимации для задачи о минимальной бисекции. Изначально они получили коэффициент апрроксимации O(log 2n), поскольку в их подходе использовался алгоритм Лейтона и Рао [14]; однако, применив вместо него алгоритм из [ ], авторы улучшили коэффициент до O(log ' и).
Теорема 1. Задача о минимальной бисекции может быть приближенно решена за полиномиальное время с коэффициентом O(log1:5 n). Более конкретно, алгоритм создает для входного графа G бисекцию (S, S), стоимость которой не превышает O(log1:5 n) ■ b(G).
Алгоритм можно непосредственно расширить на родственные или более общие задачи с получением сходных результатов.
Теорема 2. Задача о сбалансированном разрезе (и, в частности, о реберном сепараторе может быть приближенно решена за полиномиальное время с коэффициентом O(log1:5 n).
Теорема 3. Задача о заранее заданном разбиении может быть приближенно решена за время nO(r) с коэффициентом O(log1:5 n).
Для всех трех вышеприведенных задач коэффициент аппроксимации можно улучшить до O(log n) для семейства графов, не включающих фиксированный минор (в частности, сюда входят некоторые планарные графы). Для простоты здесь приводятся результаты для задачи о минимальной бисекции.
Теорема 4. Для графов, не включающих фиксированный граф в качестве минора (т.е. планарных графов) задачи о минимальной бисекции, /3-сбалансированном сечении и запранее заданном разбиении с фиксированным r могут быть приближенно решены за полиномиальное время с коэффициентом O(log n).
Стоит отметить, что все эти результаты можно еще больше обобщить, включая в них веса вершин и вершины-полюса (пары s — t); см. главу 5 в [ 6].